Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010202    DOI: 10.1088/1674-1056/22/1/010202
GENERAL Prev   Next  

Explicit solutions of nonlinear wave equation systems

Ahmet Bekir, Burcu Ayhan, M. Naci Özer
Mathematics and Computer Science Department, Eskisehir Osmangazi University, Eskisehir, Turkey
Abstract  We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equation and construct traveling wave solutions expressed in terms of hyperbolic functions, trigonometric functions, and rational functions with arbitrary parameters. We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures. It is shown that (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.
Keywords:  (G'/G)-expansion method      long-short-wave interaction system      coupled integrable dispersionless system  
Received:  19 April 2012      Revised:  26 July 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
  05.45.Yv (Solitons)  
  94.05.Fg (Solitons and solitary waves)  
Fund: Project supported by the Scientific Research Project of Eskisehir Osmangazi University, Turkey (Grant No. 201019031).
Corresponding Authors:  Ahmet Bekir     E-mail:  abekir@ogu.edu.tr

Cite this article: 

Ahmet Bekir, Burcu Ayhan, M. Naci Özer Explicit solutions of nonlinear wave equation systems 2013 Chin. Phys. B 22 010202

[1] Khalique C M and Biswas A 2009 Commun. Nonlinear Sci. Numer. Simul. 14 4033
[2] Khalique C M and Biswas A 2010 Appl. Math. Lett. 23 1397
[3] Feng Z S 2002 J. Phys. A: Math. Gen. 35 343
[4] Ahmed Ali A H and Raslan K R 2007 Int. J. Nonlinear Sci. 4 109
[5] Ma W X, Huang T and Zhang Y 2010 Phys. Scr. 82 065003
[6] Bekir A 2012 Phys. Wave Phenomena 20 1
[7] Ma W X and Lee J H 2009 Chaos Soliton. Fract. 42 1356
[8] Wazwaz A M 2008 Appl. Math. Comput. 201 489
[9] Wazwaz A M 2007 Appl. Math. Comput. 190 633
[10] Wazwaz A M 2004 Math. Comput. Model. 40 499
[11] Bekir A 2008 Phys. Scr. 77 501
[12] Dai C Q and Zhang J F 2006 Chaos Soliton. Fract. 27 1042
[13] Fan E and Zhang J 2002 Phys. Lett. A 305 383
[14] Wang M, Li X and Zhang J 2008 Phys. Lett. A 372 417
[15] Zhang S, Tong J L and Wang W 2008 Phys. Lett. A 372 2254
[16] Bekir A 2008 Phys. Lett. A 372 3400
[17] Aslan I and Ozis T 2009 Appl. Math. Comput. 209 425
[18] Zayed E M E and Gepreel K A 2009 J. Math. Phys. 50 013502
[19] Liu C P 2009 Commun. Theor. Phys. 51 985
[20] Parkes E J 2010 Appl. Math. Comput. 217 1759
[21] El-Wakil S A, Abdou M A, El-Shewy E K, Hendi A and Abdelwahed H G 2010 Phys. Scr. 81 035011
[22] Zhang S, Dong L, Ba J M and Sun Y N 2010 Pramana J. Phys. 74 207
[23] Kim H and Sakthivel R 2010 Appl. Math. Lett. 23 527
[24] Gurefe Y and Msrli E 2011 Appl. Math. Comput. 217 9189
[25] Kabir M M, Borhanifar A and Abazari R 2011 Comput. Math. Appl. 61 2044
[26] Kheiri H, Moghaddan M R and Vafaei V 2011 Pramana J. Phys. 76 831
[27] Khater A H, Hassan M M and Callebaut D K 2010 Rep. Math. Phys. 66 1
[28] Wang M L, Wang Y M and Zhang J L 2003 Chin. Phys. 12 1341
[29] Liu S K, Zhao Q and Liu S D 2011 Chin. Phys. B 20 040202
[30] Konno K and Oono H 1994 J. Phys. Soc. Jpn. 63 377
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[11] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[12] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!