Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070701    DOI: 10.1088/1674-1056/21/7/070701
GENERAL Prev   Next  

Stability and attractive basins of multiple equilibria in delayed two-neuron networks

Huang Yu-Jiao(黄玉娇), Zhang Hua-Guang(张化光), and Wang Zhan-Shan(王占山)
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract  Multiple stability for two-dimensional delayed recurrent neural networks with piecewise linear activation functions of 2r (r≥q1) corner points is studied. Sufficient conditions are established for checking the existence of (2r+1)2 equilibria in delayed recurrent neural networks. Under these conditions, (r+1)2 equilibria are locally exponentially stable, and (2r+1)2-(r+1)2-r2 equilibria are unstable. Attractive basins of stable equilibria are estimated, which are larger than invariant sets derived by decomposing state space. One example is provided to illustrate the effectiveness of our results.
Keywords:  delayed recurrent neural network      multiple equilibria      stability      attractive basin  
Received:  06 January 2012      Revised:  09 February 2012      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.30.Ks (Delay and functional equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008, 61034005, and 61074073), the National Basic Research Program of China (Grant No. 2009CB320601), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-10-0306), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. N110604005 and N110504001).
Corresponding Authors:  Zhang Hua-Guang     E-mail:  zhanghuaguang@mail.neu.edu.cn

Cite this article: 

Huang Yu-Jiao(黄玉娇), Zhang Hua-Guang(张化光), and Wang Zhan-Shan(王占山) Stability and attractive basins of multiple equilibria in delayed two-neuron networks 2012 Chin. Phys. B 21 070701

[1] Zeng Z G and Wang J 2006 IEEE Trans. Neural Netw. 17 623
[2] Zhang H G, Wang Z S and Liu D R 2008 IEEE Trans. Neural Netw. 19 855
[3] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3742
[4] Qiu F, Cui B T and Ji Y 2009 Chin. Phys. B 18 5203
[5] Wang J A 2011 Chin. Phys. B 20 120701
[6] Marcus C M and Westervelt R M 1989 Phys. Lett. A 39 347
[7] Marcus C M, Wagh F R and Westervelt R M 1991 Physica D 51 234
[8] Gopalsamy K and Leung I K C 1996 Physica D 89 395
[9] Ruan S G and Wei J J 2003 Dyn. Contin. Discrete Impuls. Syst. 10 863
[10] Kwon O M, Kwon J W and Kim S H 2011 Chin. Phys. B 20 050505
[11] Chua L O and Yang L 1988 IEEE Trans. Circuits Syst. 35 1257
[12] Morita M 1993 Neural Netw. 6 115
[13] Foss J, Longtin A, Mensour B and Milton J G 1996 Phys. Rev. Lett. 76 708
[14] Chen T P and Amari S 2001 Neural Netw. 14 1377
[15] Cheng C Y, Lin K H and Shih C W 2007 Physica D 225 61
[16] Huang G and Cao J D 2008 Phys. Lett. A 372 2842
[17] Cao J D, Feng G and Wang Y Y 2008 Physica D 237 1734
[18] Huang Y J, Wang Z S, Zhang H G and Zhang T 2010 IEEE Internation Conference on Networking, Sensing and Control April 11--13, 2010 Chicago, USA, p. 376
[19] Huang Y J and Zhang X Y 2011 Int. J. Info. Syst. Sci. 7 1
[20] Zeng Z G, Huang T W and Zheng W X 2010 IEEE Trans. Neural Netw. 21 1371
[21] Wang L L, Lu W L and Chen T P 2010 Neural Netw. 23 189
[22] Lu W L, Wang L L and Chen T P 2011 IEEE Trans. Neural Netw. 22 381
[23] Yang X F, Liao X F, Bai S and Evans D J 2005 Chaos Soliton. Fract. 26 445
[24] Yang X F, Liao X F, Tang Y Y and Evans D J 2006 Int. J. Bifurcat. Chaos 16 2737
[25] Huang T W, Li C D and Zeng Z G 2009 Comput. Math. Appl. 58 508
[26] Pakdaman K, Grotta-Ragazzo C, Malta C P, Arino O and Vibert J F 1998 Neural Netw. 11 509
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!