Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070304    DOI: 10.1088/1674-1056/21/7/070304
GENERAL Prev   Next  

Exact solutions and localized excitations of (3+1)-dimensional Gross–Pitaevskii system

Fei Jin-Xi(费金喜)a)b) and Zheng Chun-Long(郑春龙)a)c)†
a School of Physics and Electromechanical Engineering, Shaoguan University, Shaoguan 512005, China;
b Faculty of Science, Lishui University, Lishui 323000, China;
c Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  Periodic wave solutions and solitary wave solutions to a generalized (3+1)-dimensional Gross--Pitaevskii equation with time-modulated dispersion, nonlinearity, and potential are derived in terms of an improved homogeneous balance principle and a mapping approach. These exact solutions exist under certain conditions via imposing suitable constraints on the functions describing dispersion, nonlinearity, and potential. The dynamics of the derived solutions can be manipulated by prescribing specific time-modulated dispersions, nonlinearities, and potentials. The results show that the periodic waves and solitary waves with novel behaviors are similar to similaritons reported in other nonlinear systems.
Keywords:  Gross--Pitaevskii system      mapping approach      exact solution      localized excitation  
Received:  16 November 2011      Revised:  05 December 2011      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11172181), the Natural Science Foundation of Guangdong Province, China (Grant No. 10151200501000008), the Special Foundation of Talent Engineering of Guangdong Province, China (Grant No.2009109), and the Scientific Research Foundation of Key Discipline of Shaoguan University, China (Grant No. ZD2009001).
Corresponding Authors:  Zheng Chun-Long     E-mail:  zjclzheng@yahoo.com.cn

Cite this article: 

Fei Jin-Xi(费金喜) and Zheng Chun-Long(郑春龙) Exact solutions and localized excitations of (3+1)-dimensional Gross–Pitaevskii system 2012 Chin. Phys. B 21 070304

[1] Stegemant G I and Segev M 1999 Science 286 1518
[2] Gollub J P and Cross M C 2000 Nature 404 710
[3] Hua W and Liu X S 2011 Acta Phys. Sin. 60 110210 (in Chinese)
[4] Xue K J 2005 J. Phys. B 38 3841
[5] He J S, Ji M and Li Y S 2007 Chin. Phys. Lett. 24 2157
[6] Zhang Y, Wei W W, Cheng T F and Song Y 2011 Chin. Phys. B 20 110204
[7] Towers I and Malomed B A 2002 J. Opt. Soc. Am. B 19 537
[8] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[9] Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[10] Eiermann B, Treutlein P, Anker T and Albiez M 2003 Phys. Rev. Lett. 91 060402
[11] Wu L and Zhang J F 2007 New J. Phys. 9 69
[12] Ponomarenko S A and Agrawal G P 2006 Phys. Rev. Lett. 97 013901
[13] Dai C Q, Wang Y and Zhang J F 2010 Opt. Lett. 35 1437
[14] Lou S Y and Ni G J 1989 J. Math. Phys. 30 1614
[15] Li H M 2002 Chin. Phys. Lett. 19 745
[16] Zheng C L and Chen L Q 2004 Commun. Theor. Phys. 41 671
[17] Sirendaoreji and Jiong S 2003 Phys. Lett. A 309 387
[18] Fan E G 2003 J. Phys. A 36 7009
[19] Zheng C L and Chen L Q 2008 Int. J. Mod. Phys. B 22 671
[20] Wu H Y, Fei J X and Zheng C L 2010 Commun. Theor. Phys. 54 55
[21] Fei J X and Zheng C L 2011 Z. Naturforsch. 66a 1
[22] Strecher K E, Partridge G, Truscott G and Hulet R G 2002 Phys. Rev. Lett. 417 150
[23] Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev. Lett. 45 1095
[24] Dai C Q, Wang X G and Zhang J F 2011 Ann. Phys. 326 645
[25] Liang J C, Liu H P, Liu F and Yi L 2009 J. Phys. A 42 335204
[26] Song Z H, Ding Q, Mei J Q and Zhang H Q 2010 Chin. Phys. Lett. 27 010201
[27] Gao Y and Lou S Y 2009 Commun. Theor. Phys. 52 1030
[28] Bastami A A, Belic M R, Milovic D and Petrovic N Z 2011 Phys. Rev. E 84 016606
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[7] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[8] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[9] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[10] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[11] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[12] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[13] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[14] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
[15] Improvement of variational approach in an interacting two-fermion system
Liu Yan-Xia (刘彦霞), Ye Jun (叶君), Li Yuan-Yuan (李源远), Zhang Yun-Bo (张云波). Chin. Phys. B, 2015, 24(8): 086701.
No Suggested Reading articles found!