Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086701    DOI: 10.1088/1674-1056/24/8/086701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Improvement of variational approach in an interacting two-fermion system

Liu Yan-Xia (刘彦霞), Ye Jun (叶君), Li Yuan-Yuan (李源远), Zhang Yun-Bo (张云波)
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China
Abstract  A more reasonable trial ground state wave function is constructed for the relative motion of an interacting two-fermion system in a one-dimensional (1D) harmonic potential. At the boundaries both the wave function and its first derivative are continuous and the quasi-momentum is determined by a more practical constraint condition which associates two variational parameters. The upper bound of the ground state energy is obtained by applying the variational principle to the expectation value of the Hamiltonian of relative motion on the trial wave function. The resulted energy and wave function show better agreement with the analytical solution than the original proposal.
Keywords:  Bethe-ansatz      variational approaches      exact solution  
Received:  14 April 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  67.85.Lm (Degenerate Fermi gases)  
  03.75.Ss (Degenerate Fermi gases)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11234008 and 11474189), the National Basic Research Program of China (Grant No. 2011CB921601), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13076).
Corresponding Authors:  Zhang Yun-Bo     E-mail:  ybzhang@sxu.edu.cn

Cite this article: 

Liu Yan-Xia (刘彦霞), Ye Jun (叶君), Li Yuan-Yuan (李源远), Zhang Yun-Bo (张云波) Improvement of variational approach in an interacting two-fermion system 2015 Chin. Phys. B 24 086701

[1] Blume D 2012 Rep. Prog. Phys. 75 046401
[2] Zürn G, Serwane F, Lompe F, Wenz A N, Ries M G, Bohn J E and Jochim S 2012 Phys. Rev. Lett. 108 075303
[3] Zürn G, Wenz A N, Murmann S, Bergschneider A, Lompe T and Jochim S 2013 Phys. Rev. Lett. 111 175302
[4] Will S, Best T, Schneider U, Hackermüller L, Lühmann D S and Bloch I 2010 Nature 465 197
[5] Wenz A N, Zürn G, Murmann S, Brouzos I, Lompe T and Jochim S 2013 Science 342 457
[6] Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R A, Rey A M and Regal C A 2014 Science 345 306
[7] Busch T, Englert B G, Rzazewski K and Wilkens M 1998 Found. Phys. 28 549
[8] Idziaszek Z and Calarco T 2006 Phys. Rev. A 74 022712
[9] Guan X W, Batchelor M T, Lee C and Bortz M 2007 Phys. Rev. B 76 085120
[10] Batchelor M T 2007 Phys. Today 60 36
[11] He J S, Foerster A, Guan X W and Batchelor M T 2009 New J. Phys. 11 073009
[12] Wang B Q and Wang Y P 2005 Chin. Phys. Lett. 22 824
[13] Girardeau M D and Minguzzi A 2007 Phys. Rev. Lett. 99 230402
[14] Guan L M, Chen S, Wang Y P and Ma Z Q 2009 Phys. Rev. Lett. 102 160402
[15] Rontani M 2012 Phys. Rev. Lett. 108 115302
[16] Rontani M 2013 Phys. Rev. A 88 043633
[17] Rubeni D, Foerster A and Roditi I 2012 Phys. Rev. A 86 043619
[18] Zhang T, Wu W, Chen P X and Li C Z 2007 Chin. Phys. Lett. 24 2167
[19] Li X, Li Z F, Shi Z L and Wang X Q 2014 Chin. Phys. Lett. 31 060301
[20] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press)
[21] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605
[22] Yang C N 1967 Phys. Rev. Lett. 19 1312
[23] Gaudin M 1967 Phys. Lett. A 24 55
[24] Yin X G, Hao Y J, Chen S and Zhang Y B 2008 Phys. Rev. A 78 013604
[25] Lü X L, Yin X G and Zhang Y B 2010 Phys. Rev. A 81 043607
[26] Hao Y J, Zhang Y B, Liang J Q and Chen S 2006 Phys. Rev. A 73 063617
[27] McGuire J B 1964 J. Math. Phys. 5 622
[28] Muth D and Fleischhauer M 2010 Phys. Rev. Lett. 105 150403
[29] Serwane F, Zürn G, Lompe T, Ottenstein T B, Wenz A N and Jochim S 2011 Science 332 336
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[7] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[8] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[9] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[10] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[11] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[12] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[13] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[14] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
[15] Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary
Tan Zhi-Zhong (谭志中). Chin. Phys. B, 2015, 24(2): 020503.
No Suggested Reading articles found!