Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054203    DOI: 10.1088/1674-1056/21/5/054203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence

Li Ya-Qing(李亚清) and Wu Zhen-Sen(吴振森)
School of Science,Xidian University, Xi'an 710071, China
Abstract  On the basis of the extended Huygens--Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector, the characteristics of the partially coherent Gaussian Schell-model (GSM) beams propagating in slanted atmospheric turbulence are studied. Using the cross-spectral density function (CSDF), we derive the expressions for the effective beam radius, the spreading angle, and the average intensity. The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically. The influences of the coherence degree, the propagation distance, the propagation height, and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.
Keywords:  atmospheric turbulence      partially coherent beam      propagation in a slanted path  
Received:  05 May 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.25.Dd (Wave propagation in random media)  
  42.25.Kb (Coherence)  
  42.68.Bz (Atmospheric turbulence effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61172031).

Cite this article: 

Li Ya-Qing(李亚清) and Wu Zhen-Sen(吴振森) Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence 2012 Chin. Phys. B 21 054203

[1] Feizulin Z I and Kravtsov Y A 1967 Radiophys. Quantum Electron. 10 33
[2] Foley J T and Zubairy M S 1978 Opt. Commun. 26 297
[3] Wu J J 1990 Mod. Opt. 37 671
[4] Wu J and Boardman A D 1991 J. Mod. Opt. 38 1355
[5] Gori F, Santarsiero M and Borghi R 1998 J. Opt. Lett. 23 989
[6] Santarsiero M, Gori F, Borghi R, Cincotti G and Vahimaa P 1999 J. Opt. Soc. Am. A 16 106
[7] Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[8] Dogariu A and Amarande S 2003 J. Opt. Lett. 28 10
[9] Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094
[10] Jennifer C R and Frederic M 2003 J. Opt. Soc. Am. A 20 856
[11] Korotkova O, Salem M and Wolf E 2004 J. Opt. Commun. 233 225
[12] Korotkova O and Wolf E 2005 J. Opt. Commun. 246 35
[13] Eyyuboglu H T, Baykal Y and Cai Y J 2007 J. Opt. Soc. Am. A 24 2891
[14] Ji X L, Zhang E T and Lu B D 2006 J. Opt. Commun. 259 1
[15] Lu W and Sun J F 2007 J. Opt. Commun. 27 18
[16] Wang H and Wang X Z 2007 J. Opt. Commun. 276 218
[17] Liu F and Ji X L 2011 Acta Phys. Sin. 60 014216 (in Chinese)
[18] Fan C Y 1999 Chinese Journal of Quantum Electronics 16 519 (in Chinese)
[19] Wu Z S and Luo Z M 2002 Chinese Journal of Radio Science 17 254 (in Chinese)
[20] Zhang Y X and Wang G G 2006 J. Chin. Opt. Lett. 4 559
[21] Wu Z S and Wei H Y 2007 J. Atmospheric and Environmental Optics 2 321 (in Chinese)
[22] Wang H and Wang X Z 2007 Acta Opt. Sin. 27 1548 (in Chinese)
[23] Wang H and Wang X Z 2008 Acta Phys. Sin. 57 634 (in Chinese)
[24] Ishimaru A 1978 Wave Propagation and Scattering in Random Media (New York:Academic) Vol. II p. 224
[25] Lutomirski R F and Yura H T 1971 J.Appl. Opt. 10 1652
[26] Clifford S F and Yura H T 1974 J. Opt. Soc. Am. 64 1641
[27] ITU-R Document 3J/31-E 2001 Radio Communication Study Group Meeting Budapest 206 277
[28] Wei H Y and Wu Z S 2008 J. Electromagn. Waves Appl. 22 787
[29] Rao R Z 2005 Propagation of the Laser Beam in Atmospheric Turbulence (Anhui:Science and Technology Press) p. 263 (in Chinese)
[30] Wang S C H and Plonus M A 1979 J. Opt. Soc. Am. 69 1297
[31] Andrews L C and Phillips R L 1998 Laser Beam Propagation through Random Media (Washington:SPIE Press) pp. 1--19
[32] Lawrence R S and Strohbehn J W 1970 Proc. IEEE 58 1523
[1] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[2] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[3] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[4] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
[5] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
[6] Performance analysis of LDPC codes on OOK terahertz wireless channels
Chun Liu(刘纯), Chang Wang(王长), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2016, 25(2): 028702.
[7] Optimizing calculation of phase screen distribution with minimum condition along an inhomogeneous turbulent path
Wen-Yi Shao(邵文毅), Hao Xian(鲜 浩). Chin. Phys. B, 2016, 25(11): 114212.
[8] Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system
Li Zou(邹丽), Le Wang(王乐), Sheng-Mei Zhao(赵生妹), Han-Wu Chen(陈汉武). Chin. Phys. B, 2016, 25(11): 114215.
[9] Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum
Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文). Chin. Phys. B, 2015, 24(12): 120307.
[10] Scattering of a general partially coherent beam from a diffuse target in atmospheric turbulence
Wang Li-Guo (王利国), Wu Zhen-Sen (吴振森), Wang Ming-Jun (王明军), Cao Yun-Hua (曹运华), Zhang Geng (张耿). Chin. Phys. B, 2014, 23(9): 094202.
[11] Scintillation of partially coherent Gaussian-Schell model beam propagation in slant atmospheric turbulence considering inner- and outer-scale effects
Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Zhang Yuan-Yuan (张元元), Wang Ming-Jun (王明军). Chin. Phys. B, 2014, 23(7): 074202.
[12] Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence
Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Wang Ming-Jun (王明军). Chin. Phys. B, 2014, 23(6): 064216.
[13] Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence
Qian Xian-Mei (钱仙妹), Zhu Wen-Yue (朱文越), Rao Rui-Zhong (饶瑞中). Chin. Phys. B, 2012, 21(9): 094202.
[14] Propagation of high-power partially coherent fibre laser beams in a real environment
Tao Ru-Mao(陶汝茂), Si Lei(司磊), Ma Yan-Xing(马阎星), Zou Yong-Chao(邹永超), and Zhou Pu(周朴) . Chin. Phys. B, 2011, 20(9): 094208.
[15] Propagation of partially coherent beams carrying an edge dislocation through atmospheric turbulence along a slant path
Li Jin-Hong(李晋红), Zhang Hong-Run(张洪润), and Lü Bai-Da(吕百达). Chin. Phys. B, 2010, 19(9): 099201.
No Suggested Reading articles found!