Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028702    DOI: 10.1088/1674-1056/25/2/028702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance analysis of LDPC codes on OOK terahertz wireless channels

Chun Liu(刘纯), Chang Wang(王长), Jun-Cheng Cao(曹俊诚)
Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
Abstract  

Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications.

Keywords:  terahertz wireless channels      low density parity check codes      atmospheric turbulence      gamma-gamma models  
Received:  28 July 2015      Revised:  21 October 2015      Accepted manuscript online: 
PACS:  87.19.ls (Encoding, decoding, and transformation)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).

Corresponding Authors:  Chang Wang     E-mail:  cwang@mail.sim.ac.cn

Cite this article: 

Chun Liu(刘纯), Chang Wang(王长), Jun-Cheng Cao(曹俊诚) Performance analysis of LDPC codes on OOK terahertz wireless channels 2016 Chin. Phys. B 25 028702

[1] Federici J and Moeller L 2010 J. Appl. Phys. 107 111101
[2] Song H and Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256
[3] Andrews L C and Phillips R L 2005 Laser Beam Propagation through Random Media, 2nd edn. (Bellingham: SPIE Optical Engineering Press) pp. 58-74
[4] Ma J, Moeller L and Federici J F 2015 J. Infrared Millim. Terahertz Waves 36 130
[5] Rao R Z 2009 Chin. Phys. B 18 581
[6] Zhu X and Kahn J M 2003 IEEE Trans. Commun. 51 1233
[7] Xu F, Khalighi A, Causse P and Bourennane S 2009 Opt. Express 17 872
[8] Gallager R G 1962 IRE Trans. Inf. Theory 8 21
[9] Chung S Y, Forney G D, Richardson T J and Urbanke R 2001 IEEE Commun. Lett. 5 58
[10] Richardson T J and Urbanke R L 2001 IEEE Trans. Inform. Theory 47 599
[11] Tseng S, Hsieh C, Wang Y, Tsai F and Lin K 2007 Microw. Opt. Tech-nol. 49 976
[12] Sahuguede S, Fafchamps D, Anne J V, Rodriguez G, Cances J and Gallion P 2009 IEEE Photon. Technol. Lett. 21 1190
[13] Anguita J A, Djordjevic I B, Neifeld M A and Vasic B V 2005 J. Opt. Netw. 4 586
[14] Tan Z Y, Chen Z, Cao J C and Liu H C 2013 Chin. Opt. Lett. 11 031403
[15] Chen Z, Gu L, Tan Z Y, Wang C and Cao J C 2013 Chin. Opt. Lett. 11 112001
[16] Nistazakis H E, Karagianni E A, Tsigopoulos A D, Fafalios M E and Tombras G S 2009 J. Light. Technol. 27 974
[17] Chen Z and Cao J C 2013 Chin. Phys. B 22 059201
[18] Priebe S, Jastrow C, Jacob M, Thomas K O, Schrader T and Kurner T 2011 IEEE Trans. Anten. Propag. 59 1688
[19] Andrews L, Philips R L and Hopen C Y 2001 Laser Beam Scintillation with Applications (SPIE Press) pp. 86-92
[20] Al-Habash M A, Andrews L C and Phillips R L 2001 Opt. Eng. 40 1554
[21] MacKay and David J C 1999 IEEE Trans. Inform. Theory 45 399
[22] Luby M G, Mitzenmacher M, Shokrollahi M A and Spielman D A 2001 IEEE Trans. Inform. Theory 47 585
[23] Richardson T J and Urbanke R L 2001 IEEE Trans. Inform. Theory 47 638
[24] IEEE P802.16e/D8 2005 pp. 472-480
[25] Eleftheriou E, Mittelholzer T and Dholakia A 2001 Electron. Lett. 37 102
[1] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[2] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[3] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
[4] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
[5] Optimizing calculation of phase screen distribution with minimum condition along an inhomogeneous turbulent path
Wen-Yi Shao(邵文毅), Hao Xian(鲜 浩). Chin. Phys. B, 2016, 25(11): 114212.
[6] Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system
Li Zou(邹丽), Le Wang(王乐), Sheng-Mei Zhao(赵生妹), Han-Wu Chen(陈汉武). Chin. Phys. B, 2016, 25(11): 114215.
[7] Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum
Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文). Chin. Phys. B, 2015, 24(12): 120307.
[8] Scintillation of partially coherent Gaussian-Schell model beam propagation in slant atmospheric turbulence considering inner- and outer-scale effects
Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Zhang Yuan-Yuan (张元元), Wang Ming-Jun (王明军). Chin. Phys. B, 2014, 23(7): 074202.
[9] Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence
Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Wang Ming-Jun (王明军). Chin. Phys. B, 2014, 23(6): 064216.
[10] Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence
Qian Xian-Mei (钱仙妹), Zhu Wen-Yue (朱文越), Rao Rui-Zhong (饶瑞中). Chin. Phys. B, 2012, 21(9): 094202.
[11] Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence
Li Ya-Qing(李亚清) and Wu Zhen-Sen(吴振森) . Chin. Phys. B, 2012, 21(5): 054203.
[12] Propagation of partially coherent beams carrying an edge dislocation through atmospheric turbulence along a slant path
Li Jin-Hong(李晋红), Zhang Hong-Run(张洪润), and Lü Bai-Da(吕百达). Chin. Phys. B, 2010, 19(9): 099201.
[13] Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence
Zhang En-Tao(张恩涛), Ji Xiao-Ling(季小玲), and Lü Bai-Da(吕百达). Chin. Phys. B, 2009, 18(2): 571-580.
[14] Scintillation index of optical wave propagating in turbulent atmosphere
Rao Rui-Zhong(饶瑞中). Chin. Phys. B, 2009, 18(2): 581-587.
No Suggested Reading articles found!