Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 094208    DOI: 10.1088/1674-1056/20/9/094208
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Propagation of high-power partially coherent fibre laser beams in a real environment

Tao Ru-Mao(陶汝茂), Si Lei(司磊), Ma Yan-Xing(马阎星), Zou Yong-Chao(邹永超), and Zhou Pu(周朴)
College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  The propagation performance of high-power partially coherent fibre laser beams in a real environment is investigated and the theoretical model of a high-power fibre laser propagating in a real environment is established. The influence of a collimating system and thermal blooming is considered together with atmospheric turbulence and mechanical jitter. The laser energy concentration of partially coherent beams in the far field is calculated and analysed based on the theoretical model. It is shown that the propagation performance of partially coherent beams depends on the collimating system, atmospheric turbulence, mechanical jitter and thermal blooming. The propagation performance of partially coherent beams and fully coherent beams is studied and the results show that partially coherent beams are less sensitive to the influence of thermal blooming, which results in that the energy degeneration for partially coherent beams is only 50% of that for fully coherent beams. Both partially coherent beams and fully coherent beams become less sensitive to thermal blooming when the average structural constant of the refraction index fluctuations increases to 1.7 × 10-14 m-2/3. The investigation presents a reference for applications of a high-power fibre laser system.
Keywords:  fibre lasers      partially coherent beams      Gaussian—Schell mode beams      propagation  
Received:  27 April 2011      Revised:  10 May 2011      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.68.Bz (Atmospheric turbulence effects)  

Cite this article: 

Tao Ru-Mao(陶汝茂), Si Lei(司磊), Ma Yan-Xing(马阎星), Zou Yong-Chao(邹永超), and Zhou Pu(周朴) Propagation of high-power partially coherent fibre laser beams in a real environment 2011 Chin. Phys. B 20 094208

[1] Ji X L and Pu Z 2008 Appl. Phys. B 93 915
[2] Cai Y J and Qiang L 2007 Optik 120 146
[3] Zhu Y B, Zhao D M and Du X Y 2008 Opt. Express 16 18437
[4] Wu J 1990 J. Mod. Opt. 37 671
[5] Zhang E T, Ji X L and Lü B D 2009 Chin. Phys. B 18 571
[6] Xiao R, Hou J and Jiang Z F 2008 Acta Phys. Sin. 57 853 (in Chinese)
[7] Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[8] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Acta Phys. Sin. 59 5474 (in Chinese)
[9] Sprangle P, Ting A, Penano J, Fischer R and Hafizi B 2009 IEEE J. Quantum Electronics 45 138
[10] Leger J R, Nilsson J, Huignard J P, Napartovich A P and Shay T M 2009 IEEE J. Sel. Top. Quantum Electron 15 237
[11] Liu Z J, Zhou P and Xu X J 2008 High Power Laser and Particle Beams 20 1795 (in Chinese)
[12] Ji X L and Ji G M 2008 J. Opt. Soc. Am. A 25 1246
[13] Shirai T, Dogariu A and Wolf E 2003 Opt. Lett. 28 610
[14] Dan Y Q, Zeng S G, Hao B Y and Zhang B 2010 J. Opt. Soc. Am. A 27 426
[15] Wu G H, Guo H, Yu S and Luo B 2010 Opt. Lett. 35 715
[16] Andrew L C and Phillips R L 2005 Laser Beam Propagation through Random Media (Washington: Press of SPIE) p. 395
[17] Penano J, Sprangle P, Ting A, Fischer R, Hafizi B and Serafim P 2009 J. Opt. Soc. Am. B 26 503
[18] Tao R M, Si L, Ma Y X, Zou Y C and Zhou P 2011 Acta Phys. Sin. (Accepted)
[19] Palma C and Cincotti G 1997 J. Opt. Soc. Am. A 14 1885
[20] Chu X X, Liu Z J and Wu Y 2008 J. Opt. Soc. Am. A 25 7479
[21] Cai Y, Chen Y, Eyyuboglu H T and Baykal Y 2007 App. Phy. B 88 467
[22] Piatrou P and Roggemann M 2007 Appl. Opt. 46 6831
[23] Gebhardt F G 1976 Appl. Opt. 15 1479
[24] Walsh J L and Ulrich P B 1978 Laser Beam Propagation in the Atmosphere: Thermal Blooming in the Atmosphere (New York: Springer-Verlag) pp. 226—227
[25] Gebhardt F G and Smith D C 1971 IEEE J. Quantum Electronics 7 63
[26] Smith D C 1977 Proc. IEEE 65 1679
[27] Gebhardt F G 1990 Proc. SPIE 1221 1
[28] Gebhardt F G and Smith D C 1972 Appl. Opt. 11 244
[29] Schoen N C and Novoseller D E 1983 Appl. Opt. 22 3366
[30] Rao R Z 2006 Infrared and Laser Engineering 35 130 (in Chinese)
[31] Huang Y B and Wang Y J 2004 Proc. SPIE 5639 65
[32] Huang Y B and Wang Y J 2005 Acta Opt. Sin. 25 152 (in Chinese)
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[5] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[6] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[7] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[8] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[9] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[10] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[11] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[12] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[13] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[14] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[15] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
No Suggested Reading articles found!