Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120307    DOI: 10.1088/1674-1056/24/12/120307
GENERAL Prev   Next  

Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

Wang Le (王乐)a, Zhao Sheng-Mei (赵生妹)a b, Gong Long-Yan (巩龙延)c, Cheng Wei-Wen (程维文)a
a Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
c Information Physics Research Center and Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  

In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.

Keywords:  measurement-device-independent quantum key distribution      orbital angular momentum      atmospheric turbulence      decoy states  
Received:  28 May 2015      Revised:  30 July 2015      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the Innovation Program of Graduate Education of Jiangsu Province, China (Grant No. KYLX0810). Gong Long-Yan is partially supported by Qinglan Project of Jiangsu Province, China.

Corresponding Authors:  Zhao Sheng-Mei     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文) Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum 2015 Chin. Phys. B 24 120307

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p. 175
[2] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 0100304
[3] Quan D X, Zhu C H, Liu S Q and Pei C X 2015 Chin. Phys. B 24 050309
[4] Huang W, Wen Q Y, Liu B and Gao F 2015 Chin. Phys. B 24 070308
[5] Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[6] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[7] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[8] Lo H K and Chau H F 1999 Science 283 2050
[9] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[10] Xu F, Qi B and Lo H K 2010 New J. Phys. 12 113026
[11] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[12] Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C and Makarov V 2011 Nat. Commun. 2 349
[13] Burenkov V, Qi B, Fortescue B and Lo H K 2014 Quantum Inform. Comput. 14 217
[14] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
[15] Ferreira da Silva T, Vitoreti D, Xavier G B, do Amaral G C, Temporão G P and von der Weid J P 2013 Phys. Rev. A 88 052303
[16] Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
[17] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
[18] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q and Pan J W 2015 IEEE J. Sel. Top. Quantum Electron. 21 6600407
[19] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[20] Song T T, Wen Q Y, Guo F Z and Tan X Q 2012 Phys. Rev. A 86 022332
[21] Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
[22] Yu Z W, Zhou Y H and Wang X B 2015 Phys. Rev. A 91 032318
[23] Zhou C, Bao W S, Zhang H L, Li H W, Wang Y, Li Y and Wang X 2015 Phys. Rev. A 91 022313
[24] Shan Y Z, Sun S H, Ma X C, Jiang M S, Zhou Y L and Liang L M 2014 Phys. Rev. A 90 042334
[25] Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y and Chen Z B 2014 Opt. Lett. 39 5451
[26] Zhou Y Y, Zhang H Q, Zhou X J and Tian P G 2013 Acta Phys. Sin. 62 200302 (in Chinese)
[27] Sun Y, Zhao S H and Dong C 2015 Acta Phys. Sin. 64 140304 (in Chinese)
[28] Spedalieri F M 2006 Opt. Commun. 260 340
[29] Li J L and Wang C 2010 Chin. Phys. Lett. 27 110303
[30] Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P J, Padgett M J and Boyd R W 2012 Opt. Express 20 13195
[31] Zhao S M, Gong L Y, Li Y Q, Yang H, Sheng Y B and Cheng W W 2013 Chin. Phys. Lett. 30 060305
[32] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M.J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305
[33] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W and Padgett M J 2010 Phys. Rev. Lett. 105 153601
[34] Mirhosseini M, Malik M, Shi Z M and Boyd R W 2013 Nat. Commun. 4 2781
[35] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[36] Zhao S M, Leach J, Gong L Y, Ding J and Zheng B Y 2012 Opt. Express 20 452
[37] Zhao S M, Yang H, Li Y Q, Cao F, Sheng Y B, Cheng W W and Gong L Y 2013 Opt. Commun. 294 223
[38] Zhao S M, Wang B, Gong L Y, Sheng Y B, Cheng W W, Dong X L and Zheng B Y 2013 J. Lightwave Technol. 31 2823
[39] Tyler G A and Boyd R W 2009 Opt. Lett. 34 142
[40] Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E and Santamato E 2009 Nat. Photon. 3 720
[41] Fried D L 1965 J. Opt. Soc. Am. 55 1427
[42] Ekert A K 1991 Phys. Rev. Lett. 67 661
[43] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[44] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum. Inform. Comput. 5 325
[45] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[46] Awan M S, Horwath L C, Muhammad S S, Leitgeb E, Nadeem F and Khan M S 2009 J. Commun. 4 533
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[4] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[7] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[8] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[9] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[10] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[11] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[12] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[13] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[14] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[15] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
No Suggested Reading articles found!