|
|
Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum |
Wang Le (王乐)a, Zhao Sheng-Mei (赵生妹)a b, Gong Long-Yan (巩龙延)c, Cheng Wei-Wen (程维文)a |
a Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
c Information Physics Research Center and Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.
|
Received: 28 May 2015
Revised: 30 July 2015
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the Innovation Program of Graduate Education of Jiangsu Province, China (Grant No. KYLX0810). Gong Long-Yan is partially supported by Qinglan Project of Jiangsu Province, China. |
Corresponding Authors:
Zhao Sheng-Mei
E-mail: zhaosm@njupt.edu.cn
|
Cite this article:
Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文) Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum 2015 Chin. Phys. B 24 120307
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p. 175
|
[2] |
Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 0100304
|
[3] |
Quan D X, Zhu C H, Liu S Q and Pei C X 2015 Chin. Phys. B 24 050309
|
[4] |
Huang W, Wen Q Y, Liu B and Gao F 2015 Chin. Phys. B 24 070308
|
[5] |
Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
|
[6] |
Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
|
[7] |
Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
|
[8] |
Lo H K and Chau H F 1999 Science 283 2050
|
[9] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[10] |
Xu F, Qi B and Lo H K 2010 New J. Phys. 12 113026
|
[11] |
Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
|
[12] |
Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C and Makarov V 2011 Nat. Commun. 2 349
|
[13] |
Burenkov V, Qi B, Fortescue B and Lo H K 2014 Quantum Inform. Comput. 14 217
|
[14] |
Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
|
[15] |
Ferreira da Silva T, Vitoreti D, Xavier G B, do Amaral G C, Temporão G P and von der Weid J P 2013 Phys. Rev. A 88 052303
|
[16] |
Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
|
[17] |
Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
|
[18] |
Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q and Pan J W 2015 IEEE J. Sel. Top. Quantum Electron. 21 6600407
|
[19] |
Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
|
[20] |
Song T T, Wen Q Y, Guo F Z and Tan X Q 2012 Phys. Rev. A 86 022332
|
[21] |
Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
|
[22] |
Yu Z W, Zhou Y H and Wang X B 2015 Phys. Rev. A 91 032318
|
[23] |
Zhou C, Bao W S, Zhang H L, Li H W, Wang Y, Li Y and Wang X 2015 Phys. Rev. A 91 022313
|
[24] |
Shan Y Z, Sun S H, Ma X C, Jiang M S, Zhou Y L and Liang L M 2014 Phys. Rev. A 90 042334
|
[25] |
Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y and Chen Z B 2014 Opt. Lett. 39 5451
|
[26] |
Zhou Y Y, Zhang H Q, Zhou X J and Tian P G 2013 Acta Phys. Sin. 62 200302 (in Chinese)
|
[27] |
Sun Y, Zhao S H and Dong C 2015 Acta Phys. Sin. 64 140304 (in Chinese)
|
[28] |
Spedalieri F M 2006 Opt. Commun. 260 340
|
[29] |
Li J L and Wang C 2010 Chin. Phys. Lett. 27 110303
|
[30] |
Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P J, Padgett M J and Boyd R W 2012 Opt. Express 20 13195
|
[31] |
Zhao S M, Gong L Y, Li Y Q, Yang H, Sheng Y B and Cheng W W 2013 Chin. Phys. Lett. 30 060305
|
[32] |
Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M.J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305
|
[33] |
Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W and Padgett M J 2010 Phys. Rev. Lett. 105 153601
|
[34] |
Mirhosseini M, Malik M, Shi Z M and Boyd R W 2013 Nat. Commun. 4 2781
|
[35] |
Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
|
[36] |
Zhao S M, Leach J, Gong L Y, Ding J and Zheng B Y 2012 Opt. Express 20 452
|
[37] |
Zhao S M, Yang H, Li Y Q, Cao F, Sheng Y B, Cheng W W and Gong L Y 2013 Opt. Commun. 294 223
|
[38] |
Zhao S M, Wang B, Gong L Y, Sheng Y B, Cheng W W, Dong X L and Zheng B Y 2013 J. Lightwave Technol. 31 2823
|
[39] |
Tyler G A and Boyd R W 2009 Opt. Lett. 34 142
|
[40] |
Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E and Santamato E 2009 Nat. Photon. 3 720
|
[41] |
Fried D L 1965 J. Opt. Soc. Am. 55 1427
|
[42] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[43] |
Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
|
[44] |
Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum. Inform. Comput. 5 325
|
[45] |
Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
|
[46] |
Awan M S, Horwath L C, Muhammad S S, Leitgeb E, Nadeem F and Khan M S 2009 J. Commun. 4 533
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|