Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074202    DOI: 10.1088/1674-1056/23/7/074202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Scintillation of partially coherent Gaussian-Schell model beam propagation in slant atmospheric turbulence considering inner- and outer-scale effects

Li Ya-Qing (李亚清)a, Wu Zhen-Sen (吴振森)a, Zhang Yuan-Yuan (张元元)a, Wang Ming-Jun (王明军)b
a School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
b School of Physics and Electronic Engineering, Xianyang Normal College, Xianyang 712000, China
Abstract  Based on the modified Rytov theory and the international telecommunication union-radio (ITU-R) slant atmospheric structure constant model, the uniform scintillation index of partially coherent Gaussian-Schell model (GSM) beam propagation in the slant path is derived from weak- to strong-turbulence regions considering inner- and outer-scale effects. The effects of wavelength of beams and inner- and outer-scale of turbulence on scintillation are analyzed numerically. Comparison between the scintillation of GSM beams under the von Karman spectrum and that of beams under the modified Hill spectrum is made. The results obtained show that the scintillation index obtained under the von Karman spectrum is smaller than that under the modified Hill spectrum. This study can find theory bases for the experiments of the partially coherent GSM beam propagation through atmospheric turbulence.
Keywords:  atmospheric turbulence      partially coherent beam      scintillation      atmospheric propagation  
Received:  21 September 2013      Revised:  18 October 2013      Accepted manuscript online: 
PACS:  42.25.Dd (Wave propagation in random media)  
  42.25.Kb (Coherence)  
  42.68.Bz (Atmospheric turbulence effects)  
  92.60.hk (Convection, turbulence, and diffusion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172031 and 61271110).
Corresponding Authors:  Wu Zhen-Sen     E-mail:  wuzhs@mail.xidian.edu.cn
About author:  42.25.Dd; 42.25.Kb; 42.68.Bz; 92.60.hk

Cite this article: 

Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Zhang Yuan-Yuan (张元元), Wang Ming-Jun (王明军) Scintillation of partially coherent Gaussian-Schell model beam propagation in slant atmospheric turbulence considering inner- and outer-scale effects 2014 Chin. Phys. B 23 074202

[1] Tatarskii V I 1961 Wave Propagation in a Turbulent Medium (New York: McGraw-Hill) chap. 2
[2] Gracheva M E and Gurvich A S 1965 J. Izv. VUZ. Radiofiz. 8 717
[3] Clifford S F, Ochs G R and Lawrence R S 1974 J. Opt. Soc. Am. 64 148
[4] Yura H T 1974 J. Opt. Soc. Am. 64 59
[5] Gochelashvili K S and Shishov V I 1974 J. Sov. Phys. JETP 39 605
[6] Fante R L 1983 J. Opt. Soc. Am. A 73 277
[7] Frehlich R G 1987 J. Opt. Soc. Am. A 4 360
[8] Hill R J and Clifford S F 1981 J. Opt. Soc. Am. 71 675
[9] Hill R J 1982 J. Opt. Soc. Am. 72 212
[10] Andrews L C, Phillips R L, Hopen C Y and Al-Habash M A 1999 J. Opt. Soc. Am. A 16 1417
[11] Flatte S M, Wang G Y and Martin J 1993 J. Opt. Soc. Am. A 10 2363
[12] Fante R L 1983 J. Opt. Soc. Am. A 73 277
[13] Charles A D and Walters D L 1994 J. Appl. Opt. 33 8406
[14] Hill R J and Frehlich R G 1996 J. Appl. Opt. 35 986
[15] Hopen C Y and Andrews L C 1999 SPIE 3706 142
[16] Andrews L C, Al-Habash M A, Hopen C Y and Phillips R L 2001 Wave Random Media 11 271
[17] Rao R Z 2009 Chin. Phys. B 18 581
[18] Zeng Z Y, Yu J, Liu W Q and Liu H L 2006 Chin. Phys. 15 1777
[19] Wang L G, Wu Z S and Wang M J 2013 Acta. Phys. Sin. 62 164210 (in Chinese)
[20] Ji X L, Lü B D and Zhang E T 2009 Chin. Phys. B 18 571
[21] Lü B D, Li J H and Zhang H R 2010 Chin. Phys. B 19 099201
[22] Wu Z S, Wei H Y, Yang R K and Guo L X 2008 Prog. Electromagn. Res. PIER 80 277
[23] Karman V 1948 Proc. Nation. Acade. Scien. 34 530
[24] ITU-R 2001 Proceedings of the Radio Communication Study Group Meeting, July, 2001 Budapest, p. 277
[25] Ricklin J C, Miller W B and Andrew L C 1995 J. App. Opt. 34 7059
[26] Miller W B, Ricklin J C and Andrew L C 1995 J. Appl. Opt. 34 7066
[27] Korotkova O 2003 A Model for a Partially Coherent Gaussian Beam in Atmospheric Turbulence with Applications for Lasercom and Lidar Systems (Ph.D. dissertation) (Florida: University of Central Florida) pp. 56-82
[28] Miller W B, Ricklin J C and Andrews L C 1994 J. Opt. Soc. Am. A 11 2719
[29] Consortini A and Cochetti F 1993 J. Opt. Soc. Am. A 10 2354
[1] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[2] Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence
Hao Wang(王昊), Fu-Zeng Kang(康福增), Xuan Wang(王瑄), Wei Zhao(赵卫), and Shu-Wei Sun(孙枢为). Chin. Phys. B, 2021, 30(6): 064207.
[3] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[4] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[5] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[6] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[7] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
[8] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
[9] Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics
Shi-Bei Guo(郭拾贝), Kai Zhong(钟凯), Mao-Rong Wang(王茂榕), Chu Liu(刘楚), Yong Xiao(肖勇), Wen-Peng Wang(王文鹏), De-Gang Xu(徐德刚), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2017, 26(1): 019501.
[10] Performance analysis of LDPC codes on OOK terahertz wireless channels
Chun Liu(刘纯), Chang Wang(王长), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2016, 25(2): 028702.
[11] Optimizing calculation of phase screen distribution with minimum condition along an inhomogeneous turbulent path
Wen-Yi Shao(邵文毅), Hao Xian(鲜 浩). Chin. Phys. B, 2016, 25(11): 114212.
[12] Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system
Li Zou(邹丽), Le Wang(王乐), Sheng-Mei Zhao(赵生妹), Han-Wu Chen(陈汉武). Chin. Phys. B, 2016, 25(11): 114215.
[13] Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum
Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文). Chin. Phys. B, 2015, 24(12): 120307.
[14] Scattering of a general partially coherent beam from a diffuse target in atmospheric turbulence
Wang Li-Guo (王利国), Wu Zhen-Sen (吴振森), Wang Ming-Jun (王明军), Cao Yun-Hua (曹运华), Zhang Geng (张耿). Chin. Phys. B, 2014, 23(9): 094202.
[15] Scintillation characterization for multiple incoherent uplink Gaussian beams
Wu Wu-Ming (吴武明), Ning Yu (宁禹), Ma Yan-Xing (马阎星), Xi Fen-Jie (习锋杰), Xu Xiao-Jun (许晓军). Chin. Phys. B, 2014, 23(9): 099502.
No Suggested Reading articles found!