Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020511    DOI: 10.1088/1674-1056/21/2/020511
GENERAL Prev   Next  

Critical properties of mixed spin-1 and spin-5/2 with equal and unequal crystal fields

Ali Yigita) and Erhan Albayrakb)†
a. Çankhirhi Karatekin University, Department of Physics, 18100, Çankhirhi, Turkey;
b. Erciyes University, Department of Physics, 38039, Kayseri, Turkey
Abstract  The effects of assuming equal or unequal crystal fields (CF) on the phase diagrams of a mixed spin-1 and spin-5/2 system are investigated in terms of the recursion relations on the Bethe lattice (BL). The equal CF case was considered for the coordination numbers q=3, 4, and 6, while for q=3 the unequal CF case was also studied. It was found that for the equal CF case, the model exhibits second-order phase transitions and two compensation temperatures for all q, the reentrant behavior for q=4 and first-order phase transitions and tricritical point (TCP) for q=6. In the unequal CF case for q=3, the system yields first- and second-order phase transitions, TCP's, and three compensation temperatures. In addition, the TCP's in a very short range are classified as the stable and unstable ones depending on their free energies.
Keywords:  mixed spin      Bethe lattice      compensation      ferrimagnet  
Received:  11 April 2011      Revised:  03 November 2011      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  05.70.Fh (Phase transitions: general studies)  
  64.60.Cn (Order-disorder transformations)  
  75.10.Hk (Classical spin models)  
Fund: Project supported by Scientific Research Found of Karatekin University (Grant No. 2011/10).
Corresponding Authors:  Erhan Albayrak,albayrak@erciyes.edu.tr     E-mail:  albayrak@erciyes.edu.tr

Cite this article: 

Ali Yigit and Erhan Albayrak Critical properties of mixed spin-1 and spin-5/2 with equal and unequal crystal fields 2012 Chin. Phys. B 21 020511

[1] Khan O 1993 Molecular Magnetism (New York: VCH Publishers)
[2] Mallah T, Thiébaut S, Vardegauer M and Veillet P 1993 Science 262 1554
[3] Okawa H, Matsumoto N, Tamaki H and Ohba M 1993 Mol. Cryst. Liq. Cryst. 233 257
[4] Mathoniére C, Nutall C J, Carling S G and Day P 1996 Inorg. Chem. 35 1201
[5] Drillon M, Coronado E, Beltran D and Georges R 1983 J. Chem. Phys. 79 449
[6] Mansuripur M 1987 J. Appl. Phys. 61 1580
[7] Deviren B, Bathi M and Keskin M 2009 Phys. Scr. 79 065006
[8] Fukushima N, Honecker A, Wessel S and Brenig W 2004 Phys. Rev. B 69 174430
[9] Kurota M, Kikuchi R and Watari T 1953 J. Chem. Phys. 21 434
[10] Domb C 1960 Adv. Phys. 9 208
[11] Hu C K and Izmailian N Sh 1998 Phys. Rev. E 58 1644
[12] Izmailian N Sh and Hu C K 1998 Physica A 254 198
[13] Tucker J W 1999 J. Magn. Magn. Mater. 195 733
[14] Albayrak E and Keskin M 2003 J. Magn. Magn. Mater. 261 196
[15] Albayrak E and Yigit A 2005 Physica A 349 471
[16] Albayrak E and Yigit A 2005 Phys. Status Solidi B 242 1510
[17] Hu C K, Izmailian N Sh and Oganesyan K B 1999 Phys. Rev. E 59 6489
[18] Albayrak E 2003 Int. J. Mod. Phys. B 17 1087
[19] Albayrak E 2003 Phys. Status Solidi B 239 411
[20] Bobák A 1998 Physica A 258 140
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[4] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[7] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[8] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[9] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[10] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[11] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[12] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[13] High gain fiber-solid hybrid double-passing end-pumped Nd: YVO4 picosecond amplifier with high beam quality
Xueyan Dong(董雪岩), Pingxue Li(李平雪), Shun Li(李舜), Dongsheng Wang(王东生). Chin. Phys. B, 2020, 29(5): 054207.
[14] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[15] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
No Suggested Reading articles found!