Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120509    DOI: 10.1088/1674-1056/21/12/120509
GENERAL Prev   Next  

Wronskian and Grammian solutions for (3+1)-dimensional Jimbo–Miwa equation

Su Peng-Peng (苏朋朋), Tang Ya-Ning (唐亚宁), Chen Yan-Na (陈妍呐)
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  In this paper, based on the Hirota's bilinear method, the Wronskian and Grammian technique, as well as several properties of determinant, a broad set of sufficient conditions consisting of systems of linear partial differential equations are presented, which guarantees that the Wronskian determinant and the Grammian determinant solve the (3+1)-dimensional Jimbo-Miwa equation in the bilinear form, and then some special exact Wronskian and Grammian solutions are obtained by solving the differential conditions. At last, with the aid of Maple, some of these special exact solutions are shown graphically.
Keywords:  (3+1)-dimensional Jimbo-Miwa equation      Wronskian determinant      Grammian determinant      exact solution  
Received:  16 May 2012      Revised:  06 July 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.90.+p (Other topics in mathematical methods in physics)  
  02.70.Wz (Symbolic computation (computer algebra))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202161 and 11172233) and the Basic Research Fund of the Northwestern Polytechnical University, China (Grant No. GBKY1034).
Corresponding Authors:  Tang Ya-Ning     E-mail:  tyaning@nwpu.edu.cn

Cite this article: 

Su Peng-Peng (苏朋朋), Tang Ya-Ning (唐亚宁), Chen Yan-Na (陈妍呐) Wronskian and Grammian solutions for (3+1)-dimensional Jimbo–Miwa equation 2012 Chin. Phys. B 21 120509

[1] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[2] Vakhnenko V O, Parkes E J and Morrison A J 2003 Chaos, Solitons and Fractals 17 683
[3] Parkes E J and Duffy B R 1996 Comput. Phys. Commun. 98 288
[4] Fan E G 2000 Phys. Lett. A 277 212
[5] Ma W X 2004 Chaos, Solitons and Fractals 19 163
[6] Zha Q L and Li Z B 2008 Chin. Phys. Lett. 25 8
[7] Chen Y M, Ma S H and Ma Z Y 2012 Chin. Phys. B 21 050510
[8] Ma W X, Zhou R G and Gao L 2009 Phys. Lett. A 24 1677
[9] He J H and Abdou M A 2007 Chaos, Solitons and Fractals 34 1421
[10] Chen D Y, Zhang D J and Deng S F 2002 J. Phys. Soc. Jpn. 71 2
[11] Zeng Y B, Shao Y J and Ma W X 2002 Commun. Theor. Phys. 38 6
[12] Mao J J and Yang J R 2006 Chin. Phys. 15 2804
[13] Zhang L, Zhang L F and Li C Y 2008 Chin. Phys. B 17 403
[14] Jiang L, Guo Y C and Xu S J 2007 Chin. Phys. 16 2514
[15] Dai Z D, Liu J, Zeng X P and Liu Z J 2008 Phys. Lett. A 372 5984
[16] Zhang J F and Wu F M 2002 Chin. Phys. 11 425
[17] Ozis T and Aslan I 2008 Phys. Lett. A 372 7011
[18] Lou S Y and Tang X Y 2001 Chin. Phys. 10 897
[19] Tang Y N, Ma W X and Xu W 2011 Appl. Math. Comput. 217 8722
[20] Ma W X and You Y C 2005 Trans. Amer. Math. Soc. 357 1753
[21] Yang Z, Ma S H and Fang J P 2011 Acta Phys. Sin. 60 040508 (in Chinese)
[22] Ma W X and Fuchssteiner B 1996 Int. J. Non-linear Mech. 31 329
[23] Ma W X 1993 Phys. Lett. A 180 221
[24] Ma W X 2003 J. Phys. Soc. Jpn. 72 3017
[25] Ma W X 2005 Chaos, Solitons and Fractals 26 1453
[26] Ma W X 2004 Physica A 343 219
[27] Wu J P 2011 Chin. Phys. Lett. 28 050501
[28] Tang Y N, Ma W X and Xu W 2012 Chin. Phys. B 21 070212
[29] Qian C, Wang L L and Zhang J F 2011 Acta Phys. Sin. 60 064214 (in Chinese)
[30] Su J, Xu W, Duan D H and Xu G J 2011 Acta Phys. Sin. 60 110203 (in Chinese)
[1] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[2] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[3] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[4] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[5] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[6] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[7] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[8] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[9] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[10] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[11] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[12] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[13] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[14] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[15] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
No Suggested Reading articles found!