Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120506    DOI: 10.1088/1674-1056/21/12/120506
GENERAL Prev   Next  

Generalized projective synchronization of fractional-order complex networks with nonidentical nodes

Liu Jin-Gui (刘金桂)
Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China
Abstract  This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 < q < 1 is obtained based on the stability theory of the fractional-order system. The control method which combines active control with pinning control is then suggested to obtain the controllers. Furthermore, the adaptive strategy is applied to tune the control gains and coupling strength. Corresponding numerical simulations are performed to verify and illustrate the theoretical results.
Keywords:  fractional-order complex networks      generalized projective synchronization      pinning control      adaptive coupling law  
Received:  19 June 2012      Revised:  11 July 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Liu Jin-Gui     E-mail:  liujg2004@126.com

Cite this article: 

Liu Jin-Gui (刘金桂) Generalized projective synchronization of fractional-order complex networks with nonidentical nodes 2012 Chin. Phys. B 21 120506

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barabsi A L and Albert R 1999 Science 286 509
[3] Wang X F and Chen G R 2002 Int. J. Bifur. Chaos 12 187
[4] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507
[5] Wang X F and Chen G R 2002 IEEE Trans. Circ. Syst. I 49 54
[6] Park J H 2009 Mod. Phys. Lett. B 23 1889
[7] Liu T, Zhao J and Hill D J 2009 Chaos, Solitons and Fractals 40 1506
[8] Ji D H, Lee D W, Koo J H, Won S C, Lee S M and Park J H 2011 Nonlinear Dyn. 65 349
[9] Tu L L 2011 Chin. Phys. B 20 030504
[10] Du R J, Dong G G, Tian L X, Zheng S and Sun M 2010 Chin. Phys. B 19 070509
[11] Lee T H, Park J H, Jung H Y, Lee S M and Kwon O M 2012 Nonlinear Dyn. 69 1081
[12] Delshad S S, Asheghan M M and Beheshti M H 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3815
[13] Wang J W and Zhang Y B 2010 Phys. Lett. A 374 1464
[14] Wu X J and Lu H T 2010 Chin. Phys. B 19 070511
[15] Wang M J, Wang X Y and Niu Y J 2011 Chin. Phys. B 20 010508
[16] Liu Z B, Zhang H G and Sun Q Y 2010 Chin. Phys. B 19 090506
[17] Yu W W, Chen G R and Lü J H 2009 Automatica 45 429
[18] Zou Y L and Chen G R 2009 Chin. Phys. B 18 3337
[19] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) p. 41
[20] Matignon D 1996 Proceedings of the IEEE-SMC International Association for Mathematics and Computers in Simulation, Lille, France, p. 963
[21] Hu J B, Han Y and Zhao L D 2009 Acta Phys. Sin. 58 2235 (in Chinese)
[1] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[2] Cluster synchronization in community network with nonidentical nodes via intermittent pinning control
Gan Lu-Yi-Ning (甘璐伊宁), Wu Zhao-Yan (吴召艳), Gong Xiao-Li (弓晓利). Chin. Phys. B, 2015, 24(4): 040503.
[3] Pinning sampled-data synchronization for complex networks with probabilistic coupling delay
Wang Jian-An (王健安), Nie Rui-Xing (聂瑞兴), Sun Zhi-Yi (孙志毅). Chin. Phys. B, 2014, 23(5): 050509.
[4] Pinning consensus analysis of multi-agent networks with arbitrary topology
Ji Liang-Hao (纪良浩), Liao Xiao-Feng (廖晓峰), Chen Xin (陈欣). Chin. Phys. B, 2013, 22(9): 090202.
[5] Exponential synchronization of coupled memristive neural networks via pinning control
Wang Guan (王冠), Shen Yi (沈轶), Yin Quan (尹泉). Chin. Phys. B, 2013, 22(5): 050504.
[6] Pinning synchronization of time-varying delay coupled complex networks with time-varying delayed dynamical nodes
Wang Shu-Guo(王树国) and Yao Hong-Xing(姚洪兴) . Chin. Phys. B, 2012, 21(5): 050508.
[7] A new three-dimensional chaotic system and its modified generalized projective synchronization
Dai Hao(戴浩), Jia Li-Xin(贾立新), Hui Meng(惠萌), and Si Gang-Quan(司刚全) . Chin. Phys. B, 2011, 20(4): 040507.
[8] Generalized projective synchronization between two chaotic gyros with nonlinear damping
Min Fu-Hong(闵富红) . Chin. Phys. B, 2011, 20(10): 100503.
[9] Novel pinning control strategies for synchronisation of complex networks with nonlinear coupling dynamics
Liu Zhao-Bing(刘兆冰), Zhang Hua-Guang(张化光), and Sun Qiu-Ye(孙秋野). Chin. Phys. B, 2010, 19(9): 090506.
[10] Generalized projective synchronization via the state observer and its application in secure communication
Wu Di(吴迪) and Li Juan-Juan(李娟娟). Chin. Phys. B, 2010, 19(12): 120505.
[11] Cluster consensus of second-order multi-agent systems via pinning control
Lu Xiao-Qing(路晓庆), Francis Austin, and Chen Shi-Hua(陈士华). Chin. Phys. B, 2010, 19(12): 120506.
[12] Dynamic analysis of a new chaotic system with fractional order and its generalized projective synchronization
Niu Yu-Jun(牛玉军), Wang Xing-Yuan(王兴元), Nian Fu-Zhong(年福忠), and Wang Ming-Jun(王明军). Chin. Phys. B, 2010, 19(12): 120507.
[13] Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions
Zou Yan-Li(邹艳丽) and Chen Guan-Rong(陈关荣). Chin. Phys. B, 2009, 18(8): 3337-3346.
[14] Pinning control of complex Lur'e networks
Zhang Qing-Zhen(张庆振) and Li Zhong-Kui(李忠奎). Chin. Phys. B, 2009, 18(6): 2176-2183.
[15] Disturbance rejection and $H_{\infty}$ pinning control of linear complex dynamical networks
Li Zhong-Kui(李忠奎), Duan Zhi-Sheng(段志生), and Chen Guan-Rong(陈关荣) . Chin. Phys. B, 2009, 18(12): 5228-5234.
No Suggested Reading articles found!