Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040503    DOI: 10.1088/1674-1056/24/4/040503
GENERAL Prev   Next  

Cluster synchronization in community network with nonidentical nodes via intermittent pinning control

Gan Lu-Yi-Ning (甘璐伊宁), Wu Zhao-Yan (吴召艳), Gong Xiao-Li (弓晓利)
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
Abstract  In this paper, cluster synchronization in community network with nonidentical nodes is investigated. By combining intermittency with a pinning control scheme, some effective controllers are designed. In the control scheme, only one node in each community is controlled and coupling weights of a spanning tree in each community are enhanced. Based on the Lyapunov function method and mathematical analysis technique, two results for achieving cluster synchronization are obtained. Noticeably, by introducing an adaptive strategy, some universal adaptive intermittent pinning controllers are designed for different networks. Finally, two numerical simulations are performed to verify the correctness of the derived results.
Keywords:  cluster synchronization      community network      intermittent pinning control  
Received:  11 October 2014      Revised:  20 November 2014      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported jointly by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province of China (Grant No. 20132BAB201016), the Natural Science Foundation of Jiangxi Educational Committee, Jiangxi Province, China (Grant No. GJJ14273), and the Graduate Innovation Fund of Jiangxi Normal University (Grant No. YJS2014061).
Corresponding Authors:  Wu Zhao-Yan     E-mail:  zhywu7981@gmail.com

Cite this article: 

Gan Lu-Yi-Ning (甘璐伊宁), Wu Zhao-Yan (吴召艳), Gong Xiao-Li (弓晓利) Cluster synchronization in community network with nonidentical nodes via intermittent pinning control 2015 Chin. Phys. B 24 040503

[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[3] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[4] Chen G R, Wang X F and Li X 2012 Introduction to Complex Networks: Models, Structures and Dynamics (Beijing: High Education Press)
[5] Chen T P, Liu X W and Lu W L 2007 IEEE Trans. Circ. Syst. I 54 1317
[6] Yu W W, Chen G R and Lu J H 2009 Automatica 45 429
[7] Shen Y 2011 Chin. Phys. B 20 040511
[8] Li L and Fang H J 2013 Chin. Phys. B 22 110505
[9] Chai Y and Chen L Q 2014 Chin. Phys. B 23 030504
[10] Wu Z Y, Xu X J, Chen G R and Fu X C 2012 Chaos 22 043137
[11] Wu Z Y, Xu X J, Chen G R and Fu X C 2014 J. Franklin Inst. 351 4584
[12] Wu Z Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1079
[13] Wang K H, Fu X C and Li K Z 2009 Chaos 19 023106
[14] Deng L P and Wu Z Y 2012 Commun. Theor. Phys. 58 525
[15] Wu J S, Jiao L C and Chen G R 2011 Chin. Phys. B 20 060503
[16] Wu Z Y and Fu X C 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1628
[17] Ma Q and Lu J W 2013 Neurocomputing 101 354
[18] Liu X W and Chen T P 2011 IEEE Trans. Neural Networks 22 1009
[19] Hu A H, Cao J D, Hu M F and Guo L X 2014 Physica A 395 537
[20] Li K Z, Zhou J, Yu W W, Small M and Fu X C 2014 Appl. Math. Model. 38 1300
[21] Wu Z Y and Fu X C 2014 J. Franklin Inst. 351 1372
[22] Guo L, Nian X H, Pan H and Bing Z T 2014 Chin. Phys. B 23 040501
[23] Tan S and Lü J H 2014 Sci. Rep. 4 5034
[24] Lü J H, Chen G R 2005 IEEE Trans. Autom. Control 50 841
[25] Chen Y, Lü J H and Lin Z L 2013 Automatica 49 1768
[26] Chen Y, Lü J H, Yu X H and Lin Z L 2013 SIAM J. Control Optim. 51 3274
[27] Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci. USA 99 7821
[28] González M C, Herrmann H J, Kertészd J and Vicsek T 2007 Physica A 379 307
[29] Zhang Y, Friend A J, Traud A L, Porter M A, Fowler J H and Much P J 2008 Physica A 387 1705
[30] Lorenz E N 1963 J. Atmos. Sci. 20 130
[31] Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[32] Lü J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
[1] Cluster synchronization of community network with distributed time delays via impulsive control
Hui Leng(冷卉), Zhao-Yan Wu(吴召艳). Chin. Phys. B, 2016, 25(11): 110501.
[2] Robust H cluster synchronization analysis of Lurie dynamical networks
Guo Ling (郭凌), Nian Xiao-Hong (年晓红), Pan Huan (潘欢), Bing Zhi-Tong (邴志桐). Chin. Phys. B, 2014, 23(4): 040501.
[3] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[4] Cluster synchronization of uncertain complex networks with desynchronizing impulse
Cai Guo-Liang (蔡国梁), Jiang Sheng-Qin (姜胜芹), Cai Shui-Ming (蔡水明), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(12): 120505.
[5] Cluster synchronization in a network of non-identical dynamic systems
Wu Jian-She(吴建设), Jiao Li-Cheng(焦李成), and Chen Guan-Rong(陈关荣). Chin. Phys. B, 2011, 20(6): 060503.
[6] Generating weighted community networks based on local events
Xu Qi-Xin(徐琪欣) and Xu Xin-Jian(许新建). Chin. Phys. B, 2009, 18(3): 933-938.
[7] Properties of asymmetrically evolved community networks
Cui Di(崔迪), Gao Zi-You(高自友), and Zheng Jian-Feng(郑建风). Chin. Phys. B, 2009, 18(2): 516-521.
[8] Synchronization of coupled logistic maps on random community networks
Feng Cun-Fang(冯存芳), Xu Xin-Jian(许新建), Wu Zhi-Xi(吴枝喜), and Wang Ying-Hai(汪映海). Chin. Phys. B, 2008, 17(6): 1951-1956.
[9] Cascades with coupled map lattices in preferential attachment community networks
Cui Di(崔迪), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅) . Chin. Phys. B, 2008, 17(5): 1703-1708.
No Suggested Reading articles found!