Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040507    DOI: 10.1088/1674-1056/20/4/040507
GENERAL Prev   Next  

A new three-dimensional chaotic system and its modified generalized projective synchronization

Dai Hao(戴浩), Jia Li-Xin(贾立新), Hui Meng(惠萌), and Si Gang-Quan(司刚全)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Based on the Chen chaotic system, this paper constructs a new three-dimensional chaotic system with higher order nonlinear term and studies the basic dynamic behaviours of the system. The modified generalized projective synchronization has been observed in the coupled new three-dimensional chaotic system with unknown parameters. Furthermore, based on Lyapunov stability theory, it obtains the control laws and adaptive laws of parameters to make modified generalized projective synchronization of the coupled new three-dimensional chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
Keywords:  chaotic system      generalized projective synchronization      Lyapunov stability theory  
Received:  06 May 2010      Revised:  27 August 2010      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  

Cite this article: 

Dai Hao(戴浩), Jia Li-Xin(贾立新), Hui Meng(惠萌), and Si Gang-Quan(司刚全) A new three-dimensional chaotic system and its modified generalized projective synchronization 2011 Chin. Phys. B 20 040507

[1] Lorenz E N 1963 J. Atmos. Sci. 20 131
[2] Liu C X and Liu L 2009 Chin. Phys. B 18 2188
[3] Zhang R X and Yang S P 2009 Chin. Phys. B 18 3295
[4] Liu S, Liu B and Shi P M 2009 Acta Phys. Sin. 58 4383 (in Chinese)
[5] Lü J H and Chen G R 2002 Int. J. Bifurc. Chaos 12 659
[6] Liu C X, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031
[7] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[8] Chen M and Han Z 2003 Chaos, Solitons and Fractals 17 709
[9] Li W L and Song Y Z 2008 Phys. Rev. Lett. 57 51
[10] Hu J B, Han Y and Zhao L D 2009 Acta Phys. Sin. 58 1441 (in Chinese)
[11] Zhang R X, Yang Y and Yang S P 2009 Acta Phys. Sin. 58 6039 (in Chinese)
[12] Kuntanapreeda S 2009 Phys. Lett. A 373 2837
[13] Liu F C and Song J Q 2008 Journal of Dynamics and Control 6 130 endfootnotesize
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[12] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[13] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[14] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!