Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 118102    DOI: 10.1088/1674-1056/21/11/118102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structures and magnetic properties of Fe and Ni monoatomic chains encapsulated by Au nanotube

Han Zhi-Dong (韩志东), Li Xiu-Yan (李秀燕), Yang Zhi (杨致), Liu Rui-Ping (刘瑞萍), Liu Shao-Ding (刘绍鼎), Zhang Ying (张莹 )
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  Structures and magnetic properties of transition metal (TM) Fe or Ni monoatomic chains (MACs) encapsulated by Au (5, 5) nanotube (Fe@Au and Ni@Au) are investigated by using density functional theory (DFT). The calculated results show that both Fe@Au and Ni@Au prefer to adopt ferromagnetic (FM) orders as the ground states. Especially, the Fe@Au could keep the magnetic properties of free-standing Fe MAC, indicating that this system may be viewed as a new candidate in electromagnetic devices.
Keywords:  transition metal monoatomic chains      Au nanotube      structure      magnetic property  
Received:  01 March 2012      Revised:  12 June 2012      Accepted manuscript online: 
PACS:  81.07.De (Nanotubes)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104199).
Corresponding Authors:  Li Xiu-Yan     E-mail:  lixiuyan@tyut.edu.cn

Cite this article: 

Han Zhi-Dong (韩志东), Li Xiu-Yan (李秀燕), Yang Zhi (杨致), Liu Rui-Ping (刘瑞萍), Liu Shao-Ding (刘绍鼎), Zhang Ying (张莹 ) Structures and magnetic properties of Fe and Ni monoatomic chains encapsulated by Au nanotube 2012 Chin. Phys. B 21 118102

[1] Tseng G Y and Ellenbogen J C 2001 Science 294 1293
[2] Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H andLieber C M 2001 Science 294 1313
[3] Mokrousov Y, Bihlmayer G, Heinze S and Blugel S 2006Phys. Rev. Lett. 96 147201
[4] Tung J C and Guo G Y 2007 Phys. Rev. B 76 094413
[5] Delin A and Tosatti E 2003 Phys. Rev. B 68 144434
[6] Delin A and Tosatti E 2004 J. Phys.: Condens. Matter16 8061
[7] Tung J C and Guo G 2011 Comp. Phys. Commun. 18284
[8] Zhou Y G, J Xiao-Dong, Wang Z G, Xiao H Y, Gao Fand Zu X T 2010 Phys. Chem. Chem. Phys. 12 7558
[9] Yang C K, Zhao J and Lu J P 2003 Phys. Rev. Lett. 90257203
[10] Xiang H J, Yang J, Hou J G and Zhu Q 2005 New J. Phys.7 39
[11] Yang S B, Kong B S, Kim D W, Baek Y K and Jung HT 2010 J. Phys. Chem. C 114 9296
[12] Wang Y, Wu Q, Wu Y M, He X J and Li L W 2012 Chin.Phys. B 21 014212
[13] Xie Y and Zhang J M 2011 Chin. Phys. B 20 127302
[14] Peng Z H, Gong X Y, Peng Y F, Guo Y C and Ning Y T2012 Chin. Phys. B 21 78102
[15] Valle M D, Tejedor C and Cuniberti G 2006 Phys. Rev. B74 045408
[16] Wang J, Jo C and Wu R 2008 Appl. Phys. Lett. 92 032507
[17] Fabiano E, Constantin L A and Sala F D 2011 J. Chem.Phys. 134 194112
[18] Ouyang F P, Peng S L, Chen L N, Sun S Y and Xu H2011 Chin. Phys. B 20 027102
[19] Wang Y J, Wang L D, Yang M and Yan C 2011 Chin.Phys. B 20 117304
[20] Oshima Y and Onga A 2003 Phys. Rev. Lett. 91 205503
[21] An W, Pei Y and Zeng X C 2008 Nano Lett. 8 195
[22] Mokrousov Y, Bihlmayer G and Blügel S 2005 Phys. Rev.B 72 045402
[23] Zhu LY, Wang J L and Ding F 2009 J. Chem. Phys. 130064706
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 615
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[28] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[29] Perdew J P, Burke K and Ernzerhof K 1996 Phys. Rev.Lett. 77 3865
[30] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[32] Eriksson O, Johansson B, Albers R C and Boring A M1990 Phys. Rev. B 42 2707
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[10] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[11] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[12] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[13] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[14] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[15] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
No Suggested Reading articles found!