INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model |
Chen Cheng (陈成), Chen Zheng (陈铮), Zhang Jing (张静), Yang Tao (杨涛), Du Xiu-Juan (杜秀娟 ) |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.
|
Received: 29 November 2011
Revised: 09 July 2012
Accepted manuscript online:
|
PACS:
|
81.15.Aa
|
(Theory and models of film growth)
|
|
68.55.J-
|
(Morphology of films)
|
|
02.70.Hm
|
(Spectral methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51075335, 51174168, 10902086, and 51274167) and the NPU Foundation for Fundamental Research, China (Grant Nos. 201109 and NPU-FFR-JC201005). |
Corresponding Authors:
Chen Cheng
E-mail: 286500935@qq.com
|
Cite this article:
Chen Cheng (陈成), Chen Zheng (陈铮), Zhang Jing (张静), Yang Tao (杨涛), Du Xiu-Juan (杜秀娟 ) Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model 2012 Chin. Phys. B 21 118103
|
[1] |
Provatas N, Dantzig J A, Athreya B , Chan P, Stefanovic P, Goldenfeld N and Elder K R 2007 JOM 59 83
|
[2] |
Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007 Phys. Rev. B 75 064107
|
[3] |
Emmerich H, Granasy L and Lowen H 2011 Eur. Phys. J. Plus 126 102
|
[4] |
Elder K R, Huang Z F and Provatas N 2010 Phys. Rev. E 81 165421
|
[5] |
Zhang Q, Wang J C, Zhang Y C and Yang G C 2011 Acta Phys. Sin. 60 088104 (in Chinese)
|
[6] |
Tegze G, Granasy L, Toth G I, Douglas J F and Pusztai T 2011 Soft Mat. 7 1789
|
[7] |
Greenwood M, Provatas N and Rottler J 2010 Phys. Rev. Lett. 105 045702
|
[8] |
Wu K A and Voorhees P W 2012 Acta Mater. 60 407
|
[9] |
Ren X, Wang J C, Yang Y J and Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese)
|
[10] |
Chen C, Chen Z, Zhang J and Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese)
|
[11] |
Athreya P, Goldenfeld N, Dantzig J A, Greenwood M and Provatas N 2007 Phys. Rev. E 76 056706
|
[12] |
Athreya P, Goldenfeld N and Dantzig J A 2006 Phys. Rev. E 74 011601
|
[13] |
Elder K R, Huang Z F and Provatas N 2010 Phys. Rev. E 81 011602
|
[14] |
Jaatinen A and AlaNissilal T 2010 Phys. Rev. E 82 061602
|
[15] |
Jaatinen A, Achim C V, Elder K R and AlaNissilal T 2009 Phys. Rev. E 80 031602
|
[16] |
Greenwood M, Provatas N and Rottler J 2011 Phys. Rev. Lett. 105 045702
|
[17] |
Wu K A, Adland A and Karma A 2010 Phys. Rev. E 81 061601
|
[18] |
Toth G I, Pusztai T, Tegze G, Toth G and Granasy L 2011 Phys. Rev. Lett. 107 175702
|
[19] |
Prieler R, Hubert J, Li D, Verleye B, Haberkern R and Emmerich H 2009 J. Phys.: Condens. Mat. 21 464110
|
[20] |
Choudhary M A, Li D, Emmerich H and Lowen H 2011 J. Phys.: Condens. Mat. 23 265005
|
[21] |
Elder K R and Grant M 2004 Phys. Rev. E 70 051605
|
[22] |
Li L B, Chen Z M, Lin T, Pu H B, Li Q M and Li J 2007 Chin. Phys. 16 3470
|
[23] |
Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 0016
|
[24] |
Wang J P, Zhou W M, Wang C Y and Yin S Y 2008 Chin. Phys. B 17 3008
|
[25] |
Floro J A, Sinclair M B, Chason E, Freund L B, Twesten R D, Hwang R Q and Lucadamo G A 2000 Phys. Rev. Lett. 84 701
|
[26] |
Satapathy D K, Kaganer V M, Jenichen B, Braun W, Daweritz L and Ploog K H 2005 Phys. Rev. B 72 155303
|
[27] |
Tegze G, Toth G I and Granasy L 2011 Phys. Rev. Lett. 106 195502
|
[28] |
Albrecht M, Christiansen S, Michler J, Dorsch W and Strunk H P 1995 Appl. Phys. Lett. 67 1232
|
[29] |
Teichert C 2002 Phys. Rep. 365 335
|
[30] |
Aminpour M, Trushin O and Rahman T S 2011 Phys. Rev. B 84 035455
|
[31] |
Ovidko L 2000 Rev. Adv. Mater. Sci. 1 61
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|