Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 115203    DOI: 10.1088/1674-1056/21/11/115203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Nano-scale gap filling and mechanism of deposit–etch–deposit process for phase-change material

Ren Wan-Chun (任万春)a b c, Liu Bo (刘波)a, Song Zhi-Tang (宋志棠)a, Xiang Yang-Hui (向阳辉)b, Wang Zong-Tao (王宗涛)b, Zhang Bei-Chao (张北超)b, Feng Song-Lin (封松林 )a
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
b Semiconductor Manufacturing International Corporation, Shanghai 201203, China;
c Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality, purity, and accurate composition control. However, conventional physical vapor deposition process cannot meet the gap-filling requirement with device critical dimension scaling down to 90 nm or below. In this study, we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than single-step deposition process, especially at the nano-scale critical dimension. The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed. We also find that re-deposition of phase-change material from via sidewall to via bottom by argon ion bombardment during etch step was a key ingredient for the final good gap filling. We achieve void-free gap filling of phase-change material on the 45-nm via by two-cycle deposit-etch-deposit process. We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.
Keywords:  deposit-etch-deposit process      single step deposit      gap filling      re-deposition  
Received:  29 February 2012      Revised:  11 June 2012      Accepted manuscript online: 
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  81.65.Cf (Surface cleaning, etching, patterning)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934300, 2011CBA00607, and 2011CB932800), the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003), the National Natural Science Foundation of China (Grant Nos. 60906004, 60906003, 61006087, and 61076121), and the Science and Technology Council of Shanghai, China (Grant No. 1052nm07000).
Corresponding Authors:  Liu Bo     E-mail:  liubo@mail.sim.ac.cn

Cite this article: 

Ren Wan-Chun (任万春), Liu Bo (刘波), Song Zhi-Tang (宋志棠), Xiang Yang-Hui (向阳辉), Wang Zong-Tao (王宗涛), Zhang Bei-Chao (张北超), Feng Song-Lin (封松林 ) Nano-scale gap filling and mechanism of deposit–etch–deposit process for phase-change material 2012 Chin. Phys. B 21 115203

[1] Feinleib J, Neufville J, Moss S C and Ovshinsky S R 1971 Appl. Phys. Lett. 18 254
[2] Adler D, Shur M S, Silver M and Ovshinsky S R 1980 J. Appl. Phys. 51 3289
[3] Reifenberg J P, Panzer M A, Kim S B, Gibby A M, Zhang Y, Wong S, Wong H S P, Pop E and Goodson K E 2007 Appl. Phys. Lett. 91 111904
[4] Lai S and Lowrey T 2001 Tech. Dig. Int. Elec. Devi. Meet. 36 5.1
[5] Xiong F, Liao A D, Estrada D and Pop E 2011 Science 332 568
[6] Bin Y and Anantram M P 2011 IEEE Electron Dev. Lett. 32 1340
[7] Zhang T, Song Z T, Liu B, Liu W L, Feng S L and Chen B 2007 Chin. Phys. 16 2475
[8] Liu B, Song Z T, Zhang T, Feng S L and Gan F X 2004 Chin. Phys. 13 1167
[9] Rao F, Song Z T, Ren K, Zhou X L, Cheng Y, Wu L C and Liu B 2011 Nanotechology 22 145702
[10] Lee K H, Lee J W, Park J H, You D H and Seo T W 2008 Electrochem. Soc. Meet. 802 1917
[11] Im D H, Lee J I, Cho S L, An H G, Kim D H, Kim I S, Park H, Ahn D H, Horii H, Park S O, Chung U-In and Moon J T 2008 Tech. Dig. Int. Elec. Devi. Meet. 211
[12] Cho S, Ahn D, Kang M, Nam S, Kang H and Chung C 2011 IEEE Electron Dev. Lett. 8 1113
[13] Ahn S J, Song Y J, Jeong C W, Shin J M, Fai Y, Hwang Y N, Lee S H, Ryoo K C, Lee S Y, Park J H, Horii H, Ha Y H, Yi J H, Kuh B J, Koh G H, Jeong G T, Jeong H S, Kim K and Ryu B I 2005 Tech. Dig. Int. Elec. Dev. Meet. 2 99
[14] Qiao B, Feng J, Lai Y, Ling Y, Lin Y, Tang T, Cai B and Chen B 2006 Appl. Surf. Sci. 252 8404
[15] Borisenko K B, Chen Y X, Cockayne D J H, Song S A and Jeong H S 2009 J. Non-Cryst. Solids 355 2122
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[3] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[4] Landau damping of electrons with bouncing motion in a radio-frequency plasma
Jun Tao(陶军), Nong Xiang(项农), Yemin Hu(胡业民), and Yueheng Huang(黄跃恒). Chin. Phys. B, 2021, 30(12): 125202.
[5] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[6] Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
Wen-Chong Ouyang(欧阳文冲), Qi Liu(刘琦), Tao Jin(金涛), and Zheng-Wei Wu(吴征威). Chin. Phys. B, 2021, 30(9): 095203.
[7] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[8] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[9] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[10] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[11] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[12] Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2017, 26(12): 125201.
[13] Modulation of absorption manner in helicon discharges by changing profile of low axial magnetic field
Gao Zhao(赵高), Yu Wang(王宇), Chen Niu(牛晨), Zhong-Wei Liu(刘忠伟), Jiting Ouyang(欧阳吉庭), Qiang Chen(陈强). Chin. Phys. B, 2017, 26(10): 105201.
[14] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[15] Fluid simulation of the pulsed bias effect on inductively coupled nitrogen discharges for low-voltage plasma immersion ion implantation
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Xue-Chun Li(李雪春), You-Nian Wang(王友年). Chin. Phys. B, 2017, 26(1): 015201.
No Suggested Reading articles found!