Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 108501    DOI: 10.1088/1674-1056/21/10/108501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Implementation of an analogue model of a memristor based on a light-dependent resistor

Wang Xiao-Yuan (王晓媛)a, Andrew L. Fitchb, Herbert H. C. Iub, Victor Sreeramb, Qi Wei-Guia
a School of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China;
b School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Abstract  In this paper, an analogue model of a memristor using a light-dependent resistor (LDR) is presented. This model can be simplified into two parts: a control circuit and a variable resistor. It can be used to easily verify theoretical presumptions about the switching properties of memristors. This LDR-based memristor model can also be used in both simulations and experiments for future research into memristor applications. The paper includes mathematical models, simulations, and experimental results.
Keywords:  analogue model      light-dependent resistor      memristor      simulator  
Received:  03 March 2012      Revised:  09 April 2012      Accepted manuscript online: 
PACS:  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
  07.50.Ek (Circuits and circuit components)  
Corresponding Authors:  Wang Xiao-Yuan     E-mail:  youyuan-0213@163.com

Cite this article: 

Wang Xiao-Yuan (王晓媛), Andrew L. Fitch, Herbert H. C. Iu, Victor Sreeram, Qi Wei-Gui Implementation of an analogue model of a memristor based on a light-dependent resistor 2012 Chin. Phys. B 21 108501

[1] Chua L O 1971 IEEE Transaction on Circuit Theory 18 507
[2] Strukov D B, Snider G S, Stewart G R and Williams R S 2008 Nature 453 80
[3] Shin S, Kim K and Kang S 2010 IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems 29 590
[4] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoletters 10 1297
[5] Pershin Y V and Ventra M Di 2010 Neural Networks 23 881
[6] Corinto F, Ascoli A and Gilli M 2011 IEEE Trans. Circ. Sys. I: Regular Papers 58 1232
[7] Pino R E, Bohl J W, McDonald N, Wysocki B, Rozwood P, Campbell K A, Oblea A and Timilsina A 2010 IEEE/ACM International Symposium on Nanoscale Architectures, June 17-18, 2010, Anaheim, CA, p. 1
[8] Zhou J and Huang D 2012 Chin. Phys. B 21 048401
[9] Muthuswamy B 2010 Int. J. Bifur. Chaos 20 1335
[10] Driscoll T, Pershin Y V, Basov D N and Ventra M Di 2011 Appl. Phys. A 102 885
[11] Iu H H C, Yu D S, Fitch A L, Sreeram V and Chen H 2011 IEEE Trans. Circ. Sys. I: Regular Papers 58 1337
[12] Petras I 2010 IEEE Trans. Circ. Sys. II: Express Brief 57 975
[13] Fitch A L, Yu D S, Iu H H C and Sreeram V 2011 Int. J. Bifur. Chaos 11 83
[14] Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502
[15] Merrikh-Bayat F and Shouraki S B 2011 Procedia Comput. Sci. 3 128
[16] Pershin Y V and Ventra M Di 2010 IEEE Trans. Circ. Sys. I: Regular Papers 57 1857
[17] Shin S, Kim K and Kang S M 2011 IEEE Trans. Nanotechnol. 10 266
[18] Benderli S and Wey T A 2009 Electron. Lett. 45 377
[19] Batas D and Fiedler H 2011 IEEE Trans. Nanotechnol. 10 250
[20] Rak A and Cserey G 2010 IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems 29 632
[21] Biolek D, Biolek Z and Biolkova V 2009 European Conference on Circuit Theory and Design, August 23-27, 2009, Antalya, Turkey, p. 249
[22] Wey T A and Jemison W D, 2010 8th IEEE International NEWCAS Conference (NEWCAS), June 20-23 Montreal, QC, p. 49
[23] Chua L O and Kang S M, 1976 Proceeding of IEEE 64 209
[24] Valsa J, Biolek D and Biolek Z 2011 International Journal of Numerical Modeling: Electronic Networks, Devices and Fields 24 400
[25] Sodhi A and Gandhi G 2010 Int. J. Bifur. Chaos 20 2537
[26] Kolka Z, Biolek D and Biolková V 2012 International Journal of Numerical Modeling: Electronic Networks, Devices and Fields 25 216
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[4] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[8] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[9] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!