Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077501    DOI: 10.1088/1674-1056/20/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A method based on magnetic moment measurement to identify the structural transition of quenched Fe1 -xGax (x = 0.15–0.30) alloys

Zhu Xiao-Xi(朱小溪), Liu Jing-Hua(刘敬华), Xu Xiang(徐翔), and Jiang Cheng-Bao(蒋成保)
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  A method based on the measurement of Fe average atomic magnetic moment to identify the structural transition caused by the increase of Ga content in quenched Fe1 - xGax alloys (0.15 ≤ x ≤ 0.30) is proposed. The quenched Fe1 - xGax alloys show a change of the Fe average atomic magnetic moment from 2.25 μB to 1.78 μB and then to 1.58 μB, which corresponds to the structural transition from A2 to D03 and then to B2. The relationship between the structure and the magnetostriction is clarified, and the maximum magnetostriction appears in the A2 phase. The variation tendency of the magnetostriction is well characterized, which also reflects the structural transition.
Keywords:  magnetic moment      structure      magnetostrictions      Fe–Ga alloy  
Received:  18 November 2010      Revised:  28 March 2011      Accepted manuscript online: 
PACS:  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.50.Bb (Fe and its alloys)  

Cite this article: 

Zhu Xiao-Xi(朱小溪), Liu Jing-Hua(刘敬华), Xu Xiang(徐翔), and Jiang Cheng-Bao(蒋成保) A method based on magnetic moment measurement to identify the structural transition of quenched Fe1 -xGax (x = 0.15–0.30) alloys 2011 Chin. Phys. B 20 077501

[1] Clark A E, Hathaway K B, Wun-Fogle M, Restorff J B, Lograsso T A and Cullen J R 2001 IEEE. Trans. Magn. 37 2678
[2] Xing Q and Lograsso T A 2009 Scr. Mater. 60 373
[3] McClure A, Li H and Idzerda Y U 2010 J. Appl. Phys. 107 09A924
[4] Zheng L, Jiang C B, Shang J X and Xu H B 2009 Chin. Phys. B 18 1647
[5] Liu G D, Li Y X, Hu H N, Qu J P, Liu Z H, Dai X F, Zhang M, Cui Y T, Chen J L and Wu G H 2004 Acta Phys. Sin. 53 3191 (in Chinese)
[6] Wang Z B, Liu J H and Jiang C B 2010 Chin. Phys. B 19 117504
[7] Mudivarthi C, Laver M, Cullen J, Flatau A B and Wuttig M 2010 J. Appl. Phys. 107 09A957
[8] Pascarelli S, Ruffoni M P, Turtelli R S, Kubel F and Grössinger R 2008 Phys. Rev. B 77 184406
[9] Gao F, Jiang C B, Liu J H and Xu H B 2006 J. Appl. Phys. 100 123916
[10] Clark A E, Hathaway K B, Wun-Fogle M, Restorff J B, Lograsso T A, Keppens V M, Petculescu G and Taylor R A 2003 J. Appl. Phys. 93 8621
[11] Bormio-Nunes C, Tirelli M A, Turtelli R S, Grössinger R, Müller H, Wiesinger G, Sassik H and Reissner M 2005 J. Appl. Phys. 97 033901
[12] Dunlap R A, McGraw J D and Farell S P 2006 J. Magn. Magn. Mater. 305 315
[13] Borrego J M, Blazquez J S, Conde C F, Conde A and Roth S 2007 Intermetallics 15 193
[14] Liu L B, Fu S Y, Liu G D, Wu G H, Sun X D and Li J Q 2005 Phys. B 365 102
[15] Zarestky J L, Garlea V O, Lograsso T A, Schlagel D L and Stassis C 2005 Phys. Rev. B 72 180408
[16] Zarestky J L, Moze O, Lynn J W, Chen Y, Lograsso T A and Schlagel D L 2007 Phys. Rev. B 75 052406
[17] Lograsso T A and Summers E M 2006 Mater. Sci. Eng. A 416 240
[18] Guruswamy S, Jayaraman T V, Corson R P, Garside G and Thuanboon S 2008 J. Appl. Phys. 104 113919
[19] Lograsso T A, Ross A R, Schlagel D L, Clark A E and Wun-Fogle M 2003 J. Alloys Comp. 350 95
[20] Jiang C B, Feng G and Xu H B 2002 Appl. Phys. Lett. 80 1619
[21] Ikeda O, Kainuma R and Ohnuma I 2002 J. Alloys Comp. 347 198
[22] Wu R Q 2002 J. Appl. Phys. 91 7358
[23] Xing Q, Du Y, McQueeney R J and Lograsso T A 2008 Acta Mater. 56 4536
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[7] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[8] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[11] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[12] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[13] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[14] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[15] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
No Suggested Reading articles found!