CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Expanding the bandwidth of planar MNG materials with co-directional split-ring resonators |
Tang Ming-Chun(唐明春), Xiao Shao-Qiu(肖绍球)†, Wang Duo(王多), Ge Guang-Ding(葛广顶), Bai Yan-Ying(柏艳英), Zhang Jun-Rui(张俊睿), and Wang Bing-Zhong (王秉中) |
Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract An effective approach to expand the bandwidth of negative permeability of small-sized planar materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negative (MNG) material is expanded from 3.53% up to 12.87% by adding split-ring resonators (SRRs) and arranging them by proposed steps. Moreover, the experimental results validate the effectiveness of bandwidth-expanding methods, which is promising for the extensive application of metamaterials in the microwave field.
|
Received: 29 November 2010
Revised: 28 December 2010
Accepted manuscript online:
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60872034 and 60971029), the New-Century Talent Program of the Education Department of China (Grant No. NCET070154), the National Defense Research Funding (Grant No. ZJ10DZ02111), and the Hi-Tech Research and Development Program of China (Grant No. 2009AA01Z231). |
Cite this article:
Tang Ming-Chun(唐明春), Xiao Shao-Qiu(肖绍球), Wang Duo(王多), Ge Guang-Ding(葛广顶), Bai Yan-Ying(柏艳英), Zhang Jun-Rui(张俊睿), and Wang Bing-Zhong (王秉中) Expanding the bandwidth of planar MNG materials with co-directional split-ring resonators 2011 Chin. Phys. B 20 067805
|
[1] |
Veselago V G 1968 Sov. Phys. Usp. 10 509
|
[2] |
Zhang Y P, Zhao X P, Bao S and Luo C R 2010 Acta Phys. Sin. 59 6078 (in Chinese)
|
[3] |
Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X and Chen Q L 2009 Chin. Phys. B 18 174
|
[4] |
Yang R, Xie Y J, Li X F, Jiang J, Wang Y Y and Wang R 2009 Acta Phys. Sin. 58 901 (in Chinese)
|
[5] |
Xu F, Bai Y, Qiao L J, Zhao H J and Zhou J 2009 Chin. Phys. B 18 1653
|
[6] |
Fan J and Cai G Y 2010 Acta Phys. Sin. 59 6084 (in Chinese)
|
[7] |
Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N and Bai L H 2010 Chin. Phys. B 19 027701
|
[8] |
Xiang Y J, Wen S C and Tang K S 2006 Acta Phys. Sin. 55 2714 (in Chinese)
|
[9] |
Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
|
[10] |
Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
|
[11] |
Baena J D, Marques R, Medina F and Martel J 2004 Phys. Rev. B 69 014402
|
[12] |
Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk T M and Kong J A 2004 Phys. Rev. E 70 057605
|
[13] |
Wu B I, Wang W, Pacheco J, Chen X, Grzegorczyk T and Kong J A 2005 Prog. Electromagn. Res. 51 295
|
[14] |
Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny Th and Soukoulis C M 2005 Phys. Rev. Lett. 95 20
|
[15] |
Ekmekci E and Turhan-Sayan G 2010 Electron. Lett. 46 5
|
[16] |
Ekmekci E, Topalli K, Akin T and Turhan-Sayan G 2009 Opt. Express 17 16046
|
[17] |
Lepetit T, Akmansoy é, Paté M and Ganne J P 2008 Electron. Lett. 44 19
|
[18] |
Rudolph S M and Grbic A 2007 J. Appl. Phys. 102 013904
|
[19] |
Rudolph S M and Grbic A 2008 IEEE Trans. Antennas Propag. 56 2963
|
[20] |
Zharov A A, Shadrivov I V and Kivshar Y S 2003 Phys. Rev. Lett. 91 037401
|
[21] |
Ansoft High Frequency Structure Simulation (HFSS) 2005 Ansoft Corp., ver. 10
|
[22] |
Smith D R, Jonah G, Jack J M, Willie J P and David S 2006 J. Appl. Phys. 100 024507
|
[23] |
Alici K B, Bilotti F, Vegni L and Ozbay E 2007 Appl. Phys. Lett. 91 071121
|
[24] |
Baena J D, Marqués R, Medina F and Martel J 2004 Phys. Rev. B 69 014402
|
[25] |
Baena J D, Bonache J, Mart'hin F, Sillero R M, Falcone F, Lopetegi T, Laso M A G, García-García J, Gil I, Portillo M F and Sorolla M 2005 IEEE Trans. Microwave Theory Tech. 53 1451
|
[26] |
Smith D R, Vier D C, Koschny Th and Soukoulis C M 2005 Phys. Rev. E 71 036617
|
[27] |
Koschny T, Markovs P, Smith D R and Soukoulis C M 2003 Phys. Rev. E 68 065602(R)
|
[28] |
Gay-Balmaz P and Martina O J F 2002 J. Appl. Phys. 92 5
|
[29] |
Bilotti F, Toscano A, Vegni L, Aydin K, Alici K B and Ozbay E 2007 IEEE Trans. Microwave Theory Tech. 55 2865
|
[30] |
Wang J F, Qu S B, Xu Z, Ma H, Yang Y M and Gu C 2008 IEEE Trans. Antennas Propag. 56 2018
|
[31] |
Tang M C, Xiao S Q, Deng T W, Wang D, Bai Y Y, Jin D P and Wang B Z 2011 Acta Phys. Sin. 60 064101 (in Chinese)
|
[32] |
Bulu I, Caglayan H, Aydin K and Ozbay E 2005 New J. Phys. 7 223
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|