Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067805    DOI: 10.1088/1674-1056/20/6/067805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Expanding the bandwidth of planar MNG materials with co-directional split-ring resonators

Tang Ming-Chun(唐明春), Xiao Shao-Qiu(肖绍球), Wang Duo(王多), Ge Guang-Ding(葛广顶), Bai Yan-Ying(柏艳英), Zhang Jun-Rui(张俊睿), and Wang Bing-Zhong (王秉中)
Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An effective approach to expand the bandwidth of negative permeability of small-sized planar materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negative (MNG) material is expanded from 3.53% up to 12.87% by adding split-ring resonators (SRRs) and arranging them by proposed steps. Moreover, the experimental results validate the effectiveness of bandwidth-expanding methods, which is promising for the extensive application of metamaterials in the microwave field.
Keywords:  planar μ-negative materials      bandwidth expanding      co-directional split-ring resonators  
Received:  29 November 2010      Revised:  28 December 2010      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60872034 and 60971029), the New-Century Talent Program of the Education Department of China (Grant No. NCET070154), the National Defense Research Funding (Grant No. ZJ10DZ02111), and the Hi-Tech Research and Development Program of China (Grant No. 2009AA01Z231).

Cite this article: 

Tang Ming-Chun(唐明春), Xiao Shao-Qiu(肖绍球), Wang Duo(王多), Ge Guang-Ding(葛广顶), Bai Yan-Ying(柏艳英), Zhang Jun-Rui(张俊睿), and Wang Bing-Zhong (王秉中) Expanding the bandwidth of planar MNG materials with co-directional split-ring resonators 2011 Chin. Phys. B 20 067805

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Zhang Y P, Zhao X P, Bao S and Luo C R 2010 Acta Phys. Sin. 59 6078 (in Chinese)
[3] Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X and Chen Q L 2009 Chin. Phys. B 18 174
[4] Yang R, Xie Y J, Li X F, Jiang J, Wang Y Y and Wang R 2009 Acta Phys. Sin. 58 901 (in Chinese)
[5] Xu F, Bai Y, Qiao L J, Zhao H J and Zhou J 2009 Chin. Phys. B 18 1653
[6] Fan J and Cai G Y 2010 Acta Phys. Sin. 59 6084 (in Chinese)
[7] Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N and Bai L H 2010 Chin. Phys. B 19 027701
[8] Xiang Y J, Wen S C and Tang K S 2006 Acta Phys. Sin. 55 2714 (in Chinese)
[9] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[10] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
[11] Baena J D, Marques R, Medina F and Martel J 2004 Phys. Rev. B 69 014402
[12] Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk T M and Kong J A 2004 Phys. Rev. E 70 057605
[13] Wu B I, Wang W, Pacheco J, Chen X, Grzegorczyk T and Kong J A 2005 Prog. Electromagn. Res. 51 295
[14] Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny Th and Soukoulis C M 2005 Phys. Rev. Lett. 95 20
[15] Ekmekci E and Turhan-Sayan G 2010 Electron. Lett. 46 5
[16] Ekmekci E, Topalli K, Akin T and Turhan-Sayan G 2009 Opt. Express 17 16046
[17] Lepetit T, Akmansoy é, Paté M and Ganne J P 2008 Electron. Lett. 44 19
[18] Rudolph S M and Grbic A 2007 J. Appl. Phys. 102 013904
[19] Rudolph S M and Grbic A 2008 IEEE Trans. Antennas Propag. 56 2963
[20] Zharov A A, Shadrivov I V and Kivshar Y S 2003 Phys. Rev. Lett. 91 037401
[21] Ansoft High Frequency Structure Simulation (HFSS) 2005 Ansoft Corp., ver. 10
[22] Smith D R, Jonah G, Jack J M, Willie J P and David S 2006 J. Appl. Phys. 100 024507
[23] Alici K B, Bilotti F, Vegni L and Ozbay E 2007 Appl. Phys. Lett. 91 071121
[24] Baena J D, Marqués R, Medina F and Martel J 2004 Phys. Rev. B 69 014402
[25] Baena J D, Bonache J, Mart'hin F, Sillero R M, Falcone F, Lopetegi T, Laso M A G, García-García J, Gil I, Portillo M F and Sorolla M 2005 IEEE Trans. Microwave Theory Tech. 53 1451
[26] Smith D R, Vier D C, Koschny Th and Soukoulis C M 2005 Phys. Rev. E 71 036617
[27] Koschny T, Markovs P, Smith D R and Soukoulis C M 2003 Phys. Rev. E 68 065602(R)
[28] Gay-Balmaz P and Martina O J F 2002 J. Appl. Phys. 92 5
[29] Bilotti F, Toscano A, Vegni L, Aydin K, Alici K B and Ozbay E 2007 IEEE Trans. Microwave Theory Tech. 55 2865
[30] Wang J F, Qu S B, Xu Z, Ma H, Yang Y M and Gu C 2008 IEEE Trans. Antennas Propag. 56 2018
[31] Tang M C, Xiao S Q, Deng T W, Wang D, Bai Y Y, Jin D P and Wang B Z 2011 Acta Phys. Sin. 60 064101 (in Chinese)
[32] Bulu I, Caglayan H, Aydin K and Ozbay E 2005 New J. Phys. 7 223
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[7] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[8] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[9] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[10] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
No Suggested Reading articles found!