Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067701    DOI: 10.1088/1674-1056/20/6/067701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5Na0.5NbO3–0.04LiSbO3 lead-free piezoelectric ceramics

Zhao Jing-Bo(赵静波)a)b), Du Hong-Liang(杜红亮)a)b), Qu Shao-Bo(屈绍波) a)c)†, Zhang Hong-Mei(张红梅)a), and Xu Zhuo(徐卓) c)
a The College of Science, Air Force Engineering University, Xi'an 710051, China; b State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China; c Electronic Materials Research Laboratory (Key Laboratory of the Ministry of Education), Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5 + xNa0.5 + xNbO3-0.04LiSbO3 lead-free piezoelectric ceramics were examined for 0 ≤ x ≤ 0.02. The piezoelectric coefficients exhibited a maximum, d33= 187 pC/N at x=0.0075, coinciding with the maximum of the grain size and the apparent density at x=0.0075. The apparent density and the piezoelectric coefficients decreased with increasing x at higher x which was likely due to the crystal geometrical distortion of 0.96K0.5 + xNa0.5 + xNbO3-0.04LiSbO3. In addition, super-large grains were found and this may be due to liquid phase sintering. Excess (K++Na+) attracted a sum of space charges to keep the charge neutral, resulting in charge leakage during the course of ceramic polarization, influencing the piezoelectric and ferroelectric properties. These findings are of importance for guiding the design of K0.5Na0.5NbO3-based lead-free ceramics with enhanced electrical properties.
Keywords:  lead-free ceramics      piezoelectric      non-stoichiometry      K0.5Na0.5NbO3  
Received:  15 October 2010      Revised:  19 January 2011      Accepted manuscript online: 
PACS:  77.65.Bn (Piezoelectric and electrostrictive constants)  
  77.80.B- (Phase transitions and Curie point)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804130 and 60871027), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2009JQ1001), and the Funds of the Key Laboratory of Electrical Insulation and Power Equipment (Grant No. EIPE10202).

Cite this article: 

Zhao Jing-Bo(赵静波), Du Hong-Liang(杜红亮), Qu Shao-Bo(屈绍波), Zhang Hong-Mei(张红梅), and Xu Zhuo(徐卓) Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5Na0.5NbO3–0.04LiSbO3 lead-free piezoelectric ceramics 2011 Chin. Phys. B 20 067701

[1] Wang W Y, Zhang C, Zhang Z T, Liu Y and Feng G P 2009 Chin. Phys. B 18 795
[2] Wu J G, Xiao D X and WangY Y 2009 J. Alloys Compd. 476 782
[3] Yin Q Y, Yuan S G, Dong Q and Tian C G 2010 J. Alloys Compd. 491 340
[4] Li E, Suzuki R, Hoshina, Takeda T H and Tsurumi T 2009 Appl. Phys. Lett. 94 132903
[5] Zhang Q, Zhang B P, Li H T and Shang P P 2010 J. Alloys Compd. 490 260
[6] Chang Y, Yang Z and Wei L 2007 J. Am. Ceram. Soc. 90 1656
[7] Su L K, Zhu K J, Bai L, Qiu J H and Ji H L 2010 J. Alloys Compd. 493 186
[8] Lei C and Ye Z G 2008 Appl. Phys. Lett. 93 042901
[9] Huang W, Wu Z K and Wang C Q 2005 Chin. Phys. 14 2231
[10] Zhang Z T, Zhang C, Wang W Y, Ma T F, Liu Y and Feng G P 2010 Chin. Phys. B 19 097701
[11] Zang G Z, Wang J F, Chen H C, Su W B, Wang C M, Qi P, Ming B Q, Du J, Zheng L M, Zhang S J and Shrout T R 2006 Appl. Phys. Lett. 88 212908
[12] Zhang S J, Xia R and Shrout T R J 2007 Electroceramics 19 251
[13] Dai Y, Zhang X and Zhou G 2007 Appl. Phys. Lett. 90 262903
[14] Akdogan E K, Kerman K, Abazari M and A Safari 2008 Appl. Phys. Lett. 92 112908
[15] Ahn C W, Park C S, Choi C H, Nahm S, Yoo M J, Lee H G and Priya S 2009 J. Am. Ceram. Soc. 92 2033
[16] Wu H and Davies P K 2006 J. Am. Ceram. Soc. 89 2250
[17] Lee Y H, Cho J H, Kim, B I and Choi D K 2008 Jpn. J. Appl. Phys. 47 4620
[18] Zhao P, Zhang B P and Li J F 2007 Appl. Phys. Lett. 91 172901
[19] Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Wu L and Jiang Y H 2007 Appl. Phys. Lett. 91 252907
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[3] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[4] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[5] Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3
Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣). Chin. Phys. B, 2021, 30(10): 106103.
[6] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[7] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[8] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[9] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[10] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[11] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[12] Depolarization field in relaxor-based ferroelectric single crystals under one-cycle bipolar pulse drive
Chuan-Wen Chen(陈传文), Yang Xiang(项阳), Li-Guo Tang(汤立国), Lian Cui(崔莲), Bao-Qing Lin(林宝卿), Wei-Dong Du(杜伟东), Wen-Wu Cao(曹文武). Chin. Phys. B, 2019, 28(12): 127702.
[13] Harvesting base vibration energy by a piezoelectric inverted beam with pendulum
Jia-Nan Pan(潘家楠), Wei-Yang Qin(秦卫阳), Wang-Zheng Deng(邓王蒸), Hong-Lei Zhou(周红磊). Chin. Phys. B, 2019, 28(1): 017701.
[14] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
[15] First principles study on lattice vibration and electrical properties of layered perovskite Sr2M2O7 (M=Nb, Ta)
Xing Liu(刘星), Hui-Qing Fan(樊慧庆). Chin. Phys. B, 2018, 27(8): 086104.
No Suggested Reading articles found!