|
|
Theoretical study of stereodynamics for the reaction O(3P) +D2 (v=0, j=0) $\to$ OD+D and isotope effect |
Xu Zeng-Hui(许增慧) and Zong Fu-Jian(宗福建)† |
School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction ${\rm O({ }^3P) + D_2}$ ($v = 0$, $j = 0) \to$ OD + D. By running trajectories on the $^{3}$A$^\prime $ and $^{3}$A$''$ potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of $P(\theta _r $) and $P(\phi _r $) are presented. Isotope effect is discussed in this work by a comprehensive comparison with the reaction ${\rm O({ }^3P) + H_2}$ ($v = 0$, $j = 0) \to$ H + H. Common characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on $P(\theta _r $) and PDDCSs of the $^{3}$A$^\prime $ PES while the opposite on $P(\phi _r $) of the $^{3}$A$''$ potential energy surface.
|
Received: 17 October 2010
Revised: 25 December 2010
Accepted manuscript online:
|
PACS:
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
34.20.-b
|
(Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Cite this article:
Xu Zeng-Hui(许增慧) and Zong Fu-Jian(宗福建) Theoretical study of stereodynamics for the reaction O(3P) +D2 (v=0, j=0) $\to$ OD+D and isotope effect 2011 Chin. Phys. B 20 063104
|
[1] |
Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
|
[2] |
Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
|
[3] |
Zhang H, Zhu R S, Wang G J, Han K L, He G Z and Lou N Q 1999 J. Chem. Phys. 110 2922
|
[4] |
Braunstein M, Sdler-Golden S, Maiti B and Schatz G C 2004 J. Chem. Phys. 120 4316
|
[5] |
Wang W L, Rosa C and Brand ao J 2005 Chem. Phys. Lett. 418 250
|
[6] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[7] |
Chen Y T, Zhang W P, Wang X Q and Zhao G J 2009 Chem. Phys. 365 158
|
[8] |
Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46
|
[9] |
Hou C Y, Li Y M and Zhao D 2009 Chem. Phys. 364 64
|
[10] |
Han B, Zong F J, Wang C L, Ma W Y and Zhou J H 2009 Chem. Phys. 374 94
|
[11] |
Chu T S and Han K L 2005 J. Phys. Chem. A 109 2050
|
[12] |
Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
|
[13] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[14] |
Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
|
[15] |
Li B and Han K L 2009 J. Phys. Chem. A 113 10189
|
[16] |
Song J B and Gislason E A 1996 J. Chem. Phys. 105 10429
|
[17] |
Song J B and Gislason E A 1996 Chem. Phys. Lett. 258 260
|
[18] |
Rogers S, Wang D, Kuppermann A and Walch S 2000 J. Phys. Chem. A 104 2308
|
[19] |
Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
|
[20] |
Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
|
[21] |
Weck P F and Balakrishnan N 2005 J. Chem. Phys. 123 144308
|
[22] |
Weck P F, Balakrishnan N, Brand ao J, Rosa C and Wang W 2006 J. Chem. Phys. 124 074308
|
[23] |
Mart'hinez R, Sierra J D and González M 2005 J. Chem. Phys. 123 174312
|
[24] |
Rio C M A and Brand ao J 2007 Chem. Phys. Lett. 433 268
|
[25] |
Carrasco S G, Sánchez L G, Aguado A, Roncero O, Alvari no J M, Hemández M L and Paniagua M 2004 J. Chem. Phys. 121 4605
|
[26] |
Xu Z H and Zong F J 2010 J. Mol. Struc. Theochem 960 22
|
[27] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[28] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[29] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[30] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[31] |
Li J L, Yong Q, Ma F C, Ni Y Q and Zhao L N 2008 Chin. Phys. B 17 3649
|
[32] |
Han J R, Liu X F, Wang Y J, Wang Y Z, Xu G Y and Yang L 2008 Chin. Phys. B 17 4158
|
[33] |
Wong C Y, Lee T G and Wang L S 2008 Chin. Phys. B 17 2897
|
[34] |
Cao J W, Zhang Z J, Zhang C F, Liu K, Wang M H and Bian W S 2009 Proc. Natl. Acad. Sci. USA 106 13180
|
[35] |
Wang M H, Sun X M and Bian W S 2008 J. Chem. Phys. 129 084309
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|