|
|
Spin symmetry in the relativistic modified Rosen–Morse potential with the approximate centrifugal term |
Chen Wen-Li (陈文利)a, Wei Gao-Feng (卫高峰)b |
a Department of Basic Science, Xi'an Peihua University, Xi'an 710065, China; b Department of Physics and Electro-optics Engineering, Xi'an University of Arts and Science, Xi'an 710065, China |
|
|
Abstract By applying a Pekeris-type approximation to the centrifugal term, we study the spin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse potentials. A complicated energy equation and associated two-component spinors with arbitrary spin-orbit coupling quantum number k are presented. The positive-energy bound states are checked numerically in the case of spin symmetry. The relativistic modified Rosen-Morse potential cannot trap a Dirac nucleon in the limiting case $\alpha$→ 0.
|
Received: 25 July 2010
Revised: 20 December 2010
Accepted manuscript online:
|
PACS:
|
21.10.-k
|
(Properties of nuclei; nuclear energy levels)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Cite this article:
Chen Wen-Li (陈文利), Wei Gao-Feng (卫高峰) Spin symmetry in the relativistic modified Rosen–Morse potential with the approximate centrifugal term 2011 Chin. Phys. B 20 062101
|
[1] |
Arima A, Harvery M and Shinizu K 1969Phys. Lett. B30 517
|
[2] |
Hecht K T and Adeler A 1969Nucl. Phys. A137 129
|
[3] |
Bohr A, Hamamoto I and Mottslson B R 1982Phys. Scr.26 267
|
[4] |
Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987Phys. Rev. Lett.59 1405
|
[5] |
Troltenier D, Nazarewicz W, Szymanski Z and Draayer J P 1994Nucl. Phys. A567 591
|
[6] |
Stuchbery A E 1999J. Phys. G25 611
|
[7] |
Stuchbery A E 2002Nucl. Phys. A700 83
|
[8] |
Nazarewicz W, Twin P J, Fallon P and Garrett J D 1990Phys. Rev. Lett.64 1654
|
[9] |
Stephens F S, Deleplanque M A, Draper J E, Diamond R M, Macchiavelli A O, Beausang C W, Korten W, Kelly W H, Azaiez F, Becker J A, Henry E A, Yates S W, Brinkman M J, Kuhnert A and Cizeurski J A 1990Phys. Rev. Lett.65 301
|
[9] |
Stephens F S, Deleplanque M A, Draper J E, Diamond R M, Macchiavelli A O, Beausang C W, Korten W, Kelly W H, Azaiez F, Becker J A, Henry E A, Yates S W, Brinkman M J, Kuhnert A and Cizeurski J A 1998Phys. Rev. C57 R1565
|
[10] |
Troltenier D, Bahri C and Draayer J P 1995Nucl. Phys. A586 53
|
[11] |
Bell J S and Ruegg H 1975Nucl. Phys. B98 151
|
[12] |
Ginocchio J N 1997Phys. Rev. Lett.78 436
|
[13] |
Ginocchio J N 1999J. Phys. G25 617
|
[14] |
Ginocchio J N and Leviatan A 1998Phys. Lett. B42 1
|
[15] |
Ginocchio J N 1999Phys. Rep.315 231
|
[16] |
Meng J, Sugawara-Tanable K, Yamaji S, Ring P and Arima A 1998Phys. Rev. C58 R628
|
[17] |
Zhou S G, Meng J and Ring P 2003Phys. Rev. Lett.91 262501
|
[18] |
Alhaidari A D, Bahlouli H and Al-Hasan A 2006Phys. Lett. A349 87
|
[19] |
Guo J Y, Wang R D and Fang X Z 2005Phys. Rev. C72 054319
|
[20] |
Xu Q and Zhu S J 2006Nucl. Phys. A768 161
|
[21] |
Chen T S and Meng J 2003Chin. Phys. Lett.20 358
|
[22] |
Zhang M C 2009Acta Phys. Sin.58 61 (in Chinese)
|
[23] |
Zhang M C 2009Acta Phys. Sin.58 712 (in Chinese)
|
[24] |
Jia C S, Chen T and Cui L G 2009Phys. Lett. A373 1621
|
[25] |
Qiang W C, Zhou R S and Gao Y 2007J. Phys. A: Math. Theor.40 1677
|
[26] |
Leviatan A 2004Phys. Rev. Lett.92 202501
|
[27] |
Leviatan A 2005Int. J. Mod. Phys. E14 111
|
[28] |
Leviatan A 2009Phys. Rev. Lett.103 042502
|
[29] |
Typel S 2008Nucl. Phys. A806 156
|
[30] |
Grosche C 2005J. Phys. A: Math. Gen.38 2947
|
[31] |
Gu X Y, Dong S H and Ma Z Q 2009J. Phys. A: Math. Theor.42 035303
|
[32] |
Wei G F and Dong S H 2009Europhys. Lett.87 40004
|
[33] |
Wei G F and Dong S H 2010Eur. Phys. J. A43 185
|
[34] |
Pekeris C L 1934Phys. Rev.45 98
|
[35] |
Wei G F and Dong S H 2010Phys. Lett. B686 288
|
[36] |
Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products 5th edn. (New York: Academic Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|