Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 062101    DOI: 10.1088/1674-1056/20/6/062101
NUCLEAR PHYSICS Prev   Next  

Spin symmetry in the relativistic modified Rosen–Morse potential with the approximate centrifugal term

Chen Wen-Li (陈文利)a, Wei Gao-Feng (卫高峰)b
a Department of Basic Science, Xi'an Peihua University, Xi'an 710065, China; b Department of Physics and Electro-optics Engineering, Xi'an University of Arts and Science, Xi'an 710065, China
Abstract  By applying a Pekeris-type approximation to the centrifugal term, we study the spin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse potentials. A complicated energy equation and associated two-component spinors with arbitrary spin-orbit coupling quantum number k are presented. The positive-energy bound states are checked numerically in the case of spin symmetry. The relativistic modified Rosen-Morse potential cannot trap a Dirac nucleon in the limiting case $\alpha$→ 0.
Keywords:  modified Rosen-Morse potential      Dirac equation      spin symmetry  
Received:  25 July 2010      Revised:  20 December 2010      Accepted manuscript online: 
PACS:  21.10.-k (Properties of nuclei; nuclear energy levels)  
  03.65.-w (Quantum mechanics)  

Cite this article: 

Chen Wen-Li (陈文利), Wei Gao-Feng (卫高峰) Spin symmetry in the relativistic modified Rosen–Morse potential with the approximate centrifugal term 2011 Chin. Phys. B 20 062101

[1] Arima A, Harvery M and Shinizu K 1969Phys. Lett. B30 517
[2] Hecht K T and Adeler A 1969Nucl. Phys. A137 129
[3] Bohr A, Hamamoto I and Mottslson B R 1982Phys. Scr.26 267
[4] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987Phys. Rev. Lett.59 1405
[5] Troltenier D, Nazarewicz W, Szymanski Z and Draayer J P 1994Nucl. Phys. A567 591
[6] Stuchbery A E 1999J. Phys. G25 611
[7] Stuchbery A E 2002Nucl. Phys. A700 83
[8] Nazarewicz W, Twin P J, Fallon P and Garrett J D 1990Phys. Rev. Lett.64 1654
[9] Stephens F S, Deleplanque M A, Draper J E, Diamond R M, Macchiavelli A O, Beausang C W, Korten W, Kelly W H, Azaiez F, Becker J A, Henry E A, Yates S W, Brinkman M J, Kuhnert A and Cizeurski J A 1990Phys. Rev. Lett.65 301
[9] Stephens F S, Deleplanque M A, Draper J E, Diamond R M, Macchiavelli A O, Beausang C W, Korten W, Kelly W H, Azaiez F, Becker J A, Henry E A, Yates S W, Brinkman M J, Kuhnert A and Cizeurski J A 1998Phys. Rev. C57 R1565
[10] Troltenier D, Bahri C and Draayer J P 1995Nucl. Phys. A586 53
[11] Bell J S and Ruegg H 1975Nucl. Phys. B98 151
[12] Ginocchio J N 1997Phys. Rev. Lett.78 436
[13] Ginocchio J N 1999J. Phys. G25 617
[14] Ginocchio J N and Leviatan A 1998Phys. Lett. B42 1
[15] Ginocchio J N 1999Phys. Rep.315 231
[16] Meng J, Sugawara-Tanable K, Yamaji S, Ring P and Arima A 1998Phys. Rev. C58 R628
[17] Zhou S G, Meng J and Ring P 2003Phys. Rev. Lett.91 262501
[18] Alhaidari A D, Bahlouli H and Al-Hasan A 2006Phys. Lett. A349 87
[19] Guo J Y, Wang R D and Fang X Z 2005Phys. Rev. C72 054319
[20] Xu Q and Zhu S J 2006Nucl. Phys. A768 161
[21] Chen T S and Meng J 2003Chin. Phys. Lett.20 358
[22] Zhang M C 2009Acta Phys. Sin.58 61 (in Chinese)
[23] Zhang M C 2009Acta Phys. Sin.58 712 (in Chinese)
[24] Jia C S, Chen T and Cui L G 2009Phys. Lett. A373 1621
[25] Qiang W C, Zhou R S and Gao Y 2007J. Phys. A: Math. Theor.40 1677
[26] Leviatan A 2004Phys. Rev. Lett.92 202501
[27] Leviatan A 2005Int. J. Mod. Phys. E14 111
[28] Leviatan A 2009Phys. Rev. Lett.103 042502
[29] Typel S 2008Nucl. Phys. A806 156
[30] Grosche C 2005J. Phys. A: Math. Gen.38 2947
[31] Gu X Y, Dong S H and Ma Z Q 2009J. Phys. A: Math. Theor.42 035303
[32] Wei G F and Dong S H 2009Europhys. Lett.87 40004
[33] Wei G F and Dong S H 2010Eur. Phys. J. A43 185
[34] Pekeris C L 1934Phys. Rev.45 98
[35] Wei G F and Dong S H 2010Phys. Lett. B686 288
[36] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products 5th edn. (New York: Academic Press)
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[8] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[9] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[10] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[11] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[12] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[13] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[14] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
No Suggested Reading articles found!