Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060305    DOI: 10.1088/1674-1056/20/6/060305
GENERAL Prev   Next  

Generation of squeezed TEMM01 modes with periodically poled KTiOPO4 crystal

Yang Rong-Guo(杨荣国), Sun Heng-Xin(孙恒信), Zhang Jun-Xiang(张俊香), and Gao Jiang-Rui(郜江瑞)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  Spatial quantum optics and quantum information based on the high order transverse mode are of importance for the super-resolution measurement beyond the quantum noise level. We demonstrated experimentally the transverse plane TEM01 Hermite-Gauss quantum squeezing. The squeezed TEM01 mode is generated in a degenerate optical parametric amplifier with the nonlinear crystal of periodically poled KTiOPO4. The level of 2.2-dB squeezing is measured using a spatial balance homodyne detection system.
Keywords:  Hermite-Gauss mode      squeezed state      degenerate optical parametric amplifier  
Received:  17 January 2011      Revised:  02 April 2011      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
Fund: ¤Project supported by the National Natural Science Foundation of China (Grant Nos. 10774096, 60708010, and 60978008), the National Basic Research Program of China (Grant No. 2010CB923102), and the Specialized Research Fund for the Doctoral Program of China (Grant No. 200801080004).

Cite this article: 

Yang Rong-Guo(杨荣国), Sun Heng-Xin(孙恒信), Zhang Jun-Xiang(张俊香), and Gao Jiang-Rui(郜江瑞) Generation of squeezed TEMM01 modes with periodically poled KTiOPO4 crystal 2011 Chin. Phys. B 20 060305

[1] McKenzie K, Grosse N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E and Lam P K 2004 Phys. Rev. Lett. 93 161105
[2] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabe R l 2005 Phys. Rev. Lett. 95 211102
[3] He G Q, Zhu S W, Guo H B and Zeng G H 2008 Chin. Phys. B 17 1263
[4] Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[5] Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C and Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese)
[6] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[7] Josse V, Sabuncu M, Cerf N J, Leuchs G and Andersen U L 2006 Phys. Rev. Lett. 96 163602
[8] Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D and Peng K C 2003 Phys. Rev. Lett. 90 167903
[9] Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513
[10] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278
[11] Vahlbruch H, Chelkowski S, Danzmann K and Schnabel R 2007 New J. Phys. 9 371
[12] Takeno Y, Yukawa M, Yonezawa H and Furusawa A 2007 Opt. Express 15 4321
[13] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Gossler S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
[14] Lugiato L A, Gatti A and Brambilla E 2002 J. Opt. B Quantum Semiclass. Opt. 4 S176
[15] Schwob C, Cohadon P F, Fabre C, Marte M, Ritsch H, Gatti A and Lugiato L A 1998 Appl. Phys. B 66 685
[16] Gigan S, Lopez L, Delaubert V, Treps N, Fabre C and Maitre A 2006 J. Mod. Opt. 53 809
[17] Kolobov M and Fabre C 2000 Phys. Rev. Lett. 85 3789
[18] Sokolov I V, Kolobov M I, Gatti A and Lugiato L A 2001 Opt. Commun. 193 175
[19] Caves C M and Drummond P D 1994 Rev. Mod. Phys. 66 481
[20] Xiao H L, Ouyang S and Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese)
[21] Xiao H L, Ouyang S and Nie Z P 2009 Acta Phys. Sin. 58 3685 (in Chinese)
[22] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A and Lam P K 2003 Science 301 940
[23] Treps N andersen U, Buchler B, Lam P K, Bachor H A and Fabre C 2002 Phys. Rev. Lett. 88 203601
[24] Treps N, Grosse N, Bowen W P, Hsu M T L, Fabre C, Bachor H A and Lam P K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S664
[25] Li R, Zhai Z H, Zhao S J and Gao J R 2010 Acta Phys. Sin. 59 7724
[26] Fabre C, Fouet J B and Mahitre A 2000 Opt. Lett. 25 76
[27] Delaubert V, Treps N, Fabre C, Bachor H A and Réfrégier P 2008 Europhys. Lett. 81 44001
[28] Lassen M, Delaubert V, Janousek J, Wagner K, Bachor H A, Lam P K, Treps N, Buchhave P, Fabre C and Harb C C 2007 Phys. Rev. Lett. 98 083602
[29] Delaubert V 2007 Quantum Imaging with a Small Number of Transverse Modes Ph. D. Thesis (Canberra: Australian National University, Paris: Kastler Brossel Laboratory)
[30] Black Eric D 2001 Am. J. Phys. 69 79
[1] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[2] Preparation of spin squeezed state in SiV centers coupled by diamond waveguide
Yong-Hong Ma(马永红), Yuan Xu(许媛), Quan-Zhen Ding(丁全振), and Yu-Sui Chen(陈予遂). Chin. Phys. B, 2021, 30(10): 100311.
[3] Evolution of quantum states via Weyl expansion in dissipative channel
Li-Yun Hu(胡利云), Zhi-Ming Rao(饶志明), Qing-Qiang Kuang(况庆强). Chin. Phys. B, 2019, 28(8): 084206.
[4] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[5] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[6] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[7] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2014, 23(8): 080301.
[8] Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states
Lu Dao-Ming (卢道明), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(2): 020302.
[9] Wave functions of a new kind of nonlinearsingle-mode squeezed state
Fan Hong-Yi (范洪义), Da Cheng (笪诚), Chen Jun-Hua (陈俊华). Chin. Phys. B, 2014, 23(12): 120302.
[10] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[11] On the role of the uncertainty principle in superconductivity and superfluidity
Roberto Onofrio . Chin. Phys. B, 2012, 21(7): 070306.
[12] Demonstrating additional law of relativistic velocities based on squeezed light
Yang Da-Bao(杨大宝), Li Yan(李艳), Zhang Fu-Lin(张福林), and Chen Jing-Ling(陈景灵) . Chin. Phys. B, 2012, 21(7): 074201.
[13] Generation of a new bipartite coherent-entangled state and its applications
Zhang Bao-Lai(张宝来), Meng Xiang-Guo(孟祥国), and Wang Ji-Suo(王继锁) . Chin. Phys. B, 2012, 21(3): 030304.
[14] Generation of a squeezed state at 1.55 μ with periodically poled LiNbO3
Liu Qin (刘勤), Feng Jin-Xia (冯晋霞), Li Hong (李宏), Jiao Yue-Chun (焦月春), Zhang Kuan-Shou (张宽收). Chin. Phys. B, 2012, 21(10): 104204.
[15] Einstein–Podolsky–Rosen entanglement in time-dependent broadband pumping frequency non-degenerate optical parametric amplifier
Zhao Chao-Ying(赵超樱) and Tan Wei-Han(谭维翰). Chin. Phys. B, 2011, 20(1): 010305.
No Suggested Reading articles found!