Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 046401    DOI: 10.1088/1674-1056/20/4/046401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Epidemic thresholds in a heterogenous population with competing strains

Wu Qing-Chu(吴庆初)a)b)†, Fu Xin-Chu(傅新楚)a), and Yang Meng(杨孟)a)
a Department of Mathematics, Shanghai University, Shanghai 200444, China; b College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
Abstract  Among many epidemic models, one epidemic disease may transmit with the existence of other pathogens or other strains from the same pathogen. In this paper, we consider the case where all of the strains obey the susceptible-infected-susceptible mechanism and compete with each other at the expense of common susceptible individuals. By using the heterogenous mean-field approach, we discuss the epidemic threshold for one of two strains. We confirm the existence of epidemic threshold in both finite and infinite populations subject to underlying epidemic transmission. Simulations in the Barabasi-Albert (BA) scale-free networks are in good agreement with the analytical results.
Keywords:  complex network      epidemic threshold      epidemic dynamics  
Received:  23 June 2010      Revised:  04 August 2010      Accepted manuscript online: 
PACS:  64.60.aq (Networks)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  87.10.Ed (Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072136) and the Shanghai Leading Academic Discipline Project, China (Grant No. S30104).

Cite this article: 

Wu Qing-Chu(吴庆初), Fu Xin-Chu(傅新楚), and Yang Meng(杨孟) Epidemic thresholds in a heterogenous population with competing strains 2011 Chin. Phys. B 20 046401

[1] Bleed D, Dye C and Raviglione M C 2000 Curr. Opin. Plum. Med. 6 174
[2] Small M and Tse C K 2005 Int. J. Bifur. Chaos 15 1745
[3] Small M, Walker D M and Tse C K 2007 Phys. Rev. Lett. 99 188702
[4] Smith G J D, Vijaykrishna D, Bahl J, Lycett S J, Worobey M, Pybus O G, Ma S K, Cheung C L, Raghwani J, Bhatt S, Peiris J S M, Guan Y and Rambaut A 2009 Nature 459 1122
[5] Maher B and Butler D 2009 Nature 462 154
[6] Watts D J and Strogatz S H 1998 Nature 393 440
[7] Barabasi A L and Albert R 1999 Science 286 509
[8] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[9] Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 035108
[10] Santos F C, Rodrigues J F and Pacheco J M 2005 Phys. Rev. E 72 056128
[11] May R M and Lloyd A L 2001 Phys. Rev. E 64 066112
[12] Masuda N and Konno N 2006 J. Theor. Biol. 243 64
[13] Newman M E J 2005 Phys. Rev. Lett. 95 108701
[14] Thomasey D H and Martcheva M 2008 J. Bio. Sys. 16 255
[15] NuNo M, Feng Z, Martcheva M and Castillo-Chavez C 2005 SIAM J. Appl. Math. 65 964
[16] Balter M 1998 Science 281 1425
[17] Castillo-Chavez C, Huang W and Li J 1996 SIAM J. Appl. Math. 56 494
[18] Schinazi R B 2001 Markov Processes Relat. Fields 7 595
[19] Martcheva M and Horst T R 2005 Math. Biosci. 195 23
[20] Brauer F 2005 Math. Biosci. 198 119
[21] Zhang H F, Small M, Fu X C and Wang B H 2009 Chin. Phys. B 18 3633
[22] Fu X C, Small M, Walker D M and Zhang H F 2008 Phys. Rev. E 77 036113
[23] Barthelémy M, Barrat A, Pastor-Satorras R and Vespignani A 2004 Phys. Rev. Lett. 92 178701
[24] Pei W D, Liu Z X, Chen Z Q and Yuan Z Z 2008 Acta Phys. Sin. 57 6777 (in Chinese)
[25] Cai L M, Li X Z and Yu J Y 2007 Math. Appl. 20 328
[26] Kamo M and Sasaki A 2002 Physica D 165 228
[27] Liu M X and Ruan J 2009 Chin. Phys. B 18 2115
[28] Wang L and Dai G Z 2008 SIAM J. Appl. Math. 68 1495
[29] dónofrio A 2008 Nonlinear Analysis: RWA 9 1567 endfootnotesize
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!