Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 033403    DOI: 10.1088/1674-1056/20/3/033403
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dynamical effects of the four-wave mixing enhancement induced by constructive quantum interference

Xue Yan(薛艳),Wang Gang(王刚),Wu Jin-Hui(吴金辉), Zhang Bing(张冰),and Gao Jin-Yue(高锦岳)
College of Physics, Jilin University, Changchun 130023, China Key Lab of CLAMS of Educational Ministry, Changchun 130023, China
Abstract  In a four-level system of ultracold 87Rb atoms, through analytical and numerical calculations we propose an efficient scheme to achieve the enhanced four-wave mixing process and demonstrate its dynamical control by various parameters such as the travel distance z, probe detuning $\delta$ and the probe pulse width $\tau$. In particular, we find that the maximal intensity of the nonlinearly generated signal pulse can be about 80% of the initial input probe under the optimal condition. This greatly enhanced conversion efficiency occurs due to the constructive quantum interference between two different components of the generated signal pulse.
Keywords:  four-wave mixing      quantum interference  
Received:  17 April 2010      Revised:  20 June 2010      Accepted manuscript online: 
PACS:  34.80.Pa (Coherence and correlation)  
  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 10774059 and 10904047), the National Basic Research Program of China (Grant No. 2006CB921103), the doctoral program foundation of institution of High Education of China (Grant No. 20060183046) and the basic research foundation of Jilin University of China (Grant No. 200903326).

Cite this article: 

Xue Yan(薛艳), Wang Gang(王刚), Wu Jin-Hui(吴金辉), Zhang Bing(张冰), and Gao Jin-Yue(高锦岳) Dynamical effects of the four-wave mixing enhancement induced by constructive quantum interference 2011 Chin. Phys. B 20 033403

[1] Ham B S, Shahriar M S and Hemmer P R 1999 Opt. Lett. 24 86
[2] Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
[3] Fu P M, Jiang Q, Liu X, Mi X, Sun J, Wu L A,Yu Z H and Zuo Z C 2007 Chin. Phys. 16 1042
[4] Hakuta K, Marmet L and Stoicheff B P 1991 Phys. Rev. Lett. 66 596
[5] Gong S Q, Niu Y P and Sun H 2007 Chin. Phys. 16 429
[6] Jain M, Yin G Y, Field J E and Harris S E 1993 Opt. Lett. 18 998
[7] Petch J C, Keitel C H, Knight P L and Marangos J P 1996 Phys. Rev. A 53 543
[8] Merriam A J, Sharpe S J, Xia H, Manuszak D, Yin G Y and Harris S E 1999 Opt. Lett. 24 625
[9] Dorman C, Kucukkara I and Marangos J P 1999 Phys. Rev. A 61 013802
[10] Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[11] Jain M, Xia H, Yin G Y, Merriam A J and Harris S E 1996 Phys. Rev. Lett. 77 4326
[12] Johnsson M T and Fleischhauer M 2002 Phys. Rev. A 66 043808
[13] Payne M G and Deng L 2002 Phys. Rev. A 65 063806
[14] Deng L, Payne M G and Garrett W R 2001 Phys. Rev. A 63 043811
[15] Payne M G and Deng L 2003 Phys. Rev. Lett. 91 123602
[16] Crisp M D 1973 Phys. Rev. A 8 2128
[17] Shakhmuratov R N and Odeurs J 2003 Phys. Rev. A 68 043802
[18] Shakhmuratov R N, Odeurs J, Coussement R, Megret P, Kozyreff G and Mandel P 2001 Phys. Rev. Lett. 87 153601
[19] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[20] Ye C Y, Sautenkov V A, Rostovtsev Y V and Scully M O 2003 Opt. Lett. 28 2213
[21] Sautenkov V A, Ye C Y, Rostovtsev Y V, Welch G R and Scully M O 2004 Phys. Rev. A 70 033406
[22] Morigi G, Franke-Arnold S and Oppo G 2002 Phys. Rev. A 66 053409
[23] Zibrov A S, Matsko A B and Scully M O 2002 Phys. Rev. Lett. 89 103601
[24] Kang H, Hernandez G and Zhu Y F 2004 Phys. Rev. A 70 061804(R)
[25] Zheng D, Gordon L A, Wu Y S, Feigelson R S, Fejer M M and Byer R L 1998 Opt. Lett. 23 1010
[26] Fry E S, Lukin M D, Walther T and Welch G R 2000 Opt. Commun. 179 499
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[3] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[6] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[7] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[8] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[9] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[10] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[11] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[12] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[13] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[14] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[15] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
No Suggested Reading articles found!