|
|
Density-functional study of CO adsorbed on RhN (N=2–19) clusters |
Tian Fu-Yang(田付阳)† and Shen Jiang(申江) |
Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract We investigate the structural, electronic and adsorption properties of one single CO molecule adsorbed on RhN (N = 2-19) clusters, using the density-functional theory in the spin-polarized generalized gradient approximation. It is found that the structural growth model of the RhN clusters transforms from double layers (N = 12-16) to three layers (N = 17-19). Three different adsorption types are the atop site adsorption for N = 6, 8, 9, 11, 12, the bridge site adsorption for N = 2-5, 7, 10, 13-15, 17 and the face adsorption for N = 16, 18, 19. The adsorption abilities of RhN clusters are related to C-O bond length, vibrational frequency, adsorption energy and the charge transfer between CO and Rh clusters as well as the electronic density of state. With the increase of Rh cluster size, the adsorption energy of CO adsorbed on RhN clusters tends to be 2.2 eV-2.3 eV, which is 0.2 eV-0.3 eV larger than the theoretical value (about 2.0 eV) of CO molecule adsorption on clean Rh (111) surface.
|
Received: 31 March 2011
Revised: 03 June 2011
Accepted manuscript online:
|
PACS:
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
31.15 ae
|
|
|
31.15.E-
|
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606401). |
Cite this article:
Tian Fu-Yang(田付阳) and Shen Jiang(申江) Density-functional study of CO adsorbed on RhN (N=2–19) clusters 2011 Chin. Phys. B 20 123101
|
[1] |
Fielicke A, Helden G V, Meijer G, Pedersen D B, Simard B and Rayner D M, 2006 J. Chem. Phys. 124 194305
|
[2] |
Gruene P, Fielicke A, Meijer G and Rayner D M 2008 Phys. Chem. Chem. Phys. 10 6144
|
[3] |
Lyon J T, Gruene P, Fielicke A, Meijer G and Rayner D M 2009 J. Chem. Phys. 131 184706
|
[4] |
Fielicke A, Gruene P, Meijer G and Rayner D M 2009 Surf. Sci. 603 1427
|
[5] |
Gutsev G L, Bauschlicher C W and Andrews L 2003 J. Chem. Phys. 119 3681
|
[6] |
Wang Y and Gong X G 2006 J. Chem. Phys. 125 124703
|
[7] |
Padilla-Campos L 2008 J. Mol. Struct: THEOCHEM 851 15
|
[8] |
Tian F Y, Shen J and Wang Y X 2010 J. Phys. Chem. A 114 1616
|
[9] |
Wang Y, Wang C and Wang S 2011 Chin. Phys. B 20 036801
|
[10] |
Zhou M and Andrews L 1999 J. Am. Chem. Soc. 121 9171
|
[11] |
Zhou M and Andrews L 1999 J. Phys. Chem. A 103 7773
|
[12] |
Mineva T, Russo N and Freund H J 2001 J. Phys. Chem. A 105 10723
|
[13] |
Swart I, Groot F M F, Weckhuysen B M, Rayner D M, Meijer G and Fielicke A 2008 J. Am. Chem. Soc. 130 2126
|
[14] |
Fielicke A, Helden G V, Meijer G, Simard B, Dénommée S and Rayner D 2003 J. Am. Chem. Soc. 125 11184
|
[15] |
Fielicke A, Helden G V, Meijer G, Simard B, Dénommée S and Rayner D 2004 J. Phys. Chem. B 108 14591
|
[16] |
Cox A J, Louderback J G, Apsel S E and Bloomfield L A 1994 Phys. Rev. B 49 12295
|
[17] |
Wang H, Haouari H, Craig R, Liu Y, Lombardi J R and Lindsay D M 1997 J. Chem. Phys. 106 2101
|
[18] |
Adlhart C and Uggerud E 2005 J. Chem. Phys. 123 214709
|
[19] |
Harding D, Ford M S, Walsh T R and Mackenzie S R 2007 Phys. Chem. Chem. Phys. 9 2130
|
[20] |
Beyer M K and Knickelbein M B 2007 J. Chem. Phys. 126 104301
|
[21] |
Harding D J, Walsh T R, Hamilton S M, Hopkins W S, Mackenzie S R, Gruene P, Haertelt M, Meijer G and Fielicke A 2010 J. Chem. Phys. 132 011101
|
[22] |
Chien C H, Blaisten-Barojas E and Pederson M R 1998 Phys. Rev. A 58 2196
|
[23] |
Chien C H, Blaisten-Barojas E and Pederson M R 2000 J. Chem. Phys. 112 2301
|
[24] |
Harding D, Mackenzie S R and Walsh T R 2006 J. Phys. Chem. B 110 18272
|
[25] |
Zhang W, Xiao L, Hirata Y, Pawluk T and Wang L 2004 Chem. Phys. Lett. 383 67
|
[26] |
Bae Y C, Osanai H, Kumar V and Kawazoe Y 2004 Phys. Rev. B 70 195413
|
[27] |
Bae Y C, Kumar V, Osanai H and Kawazoe Y 2005 Phys. Rev. B 72 125427
|
[28] |
Chou J P, Chen H Y T, Hsing C R, Chang C M, Cheng C and Wei1 C M 2009 Phys. Rev. B 80 165412
|
[29] |
Sun Y, Fournier R and Zhang M 2009 Phys. Rev. A 79 043202
|
[30] |
Aguilera-Granja F, Garc'hia-Fuente A and Vega A 2008 Phys. Rev. B 78 134425
|
[31] |
Wang L and Johnson D 2007 Phys. Rev. B 75 235405
|
[32] |
Nayak S K, Weber S E, Jena P, Wildberger K, Zeller R and Dederichs P H 1997 Phys. Rev. B 56 14
|
[33] |
Yang J, Toigo F, Wang K and Zhang M 1994 Phys. Rev. B 50 7173
|
[34] |
Dufour L 2001 Int. J. Quantum Chem. 85 162
|
[35] |
DMOL is a density functional theory program distributed by Accelrys, Inc. B. Delley 1990 J. Chem. Phys. 92 508; 2000 113 7756
|
[36] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[37] |
Delley B 2002 Phys. Rev. B 66 155125
|
[38] |
Lide D R 1995 CRC Handbook of Chemistry and Physics 73rd edn. (Boca Raton: CRC Press) pp. 9-15
|
[39] |
NIST Standard Reference Database 69 March 2003 Release: NIST Chemistry WebBook
|
[40] |
Mainardi D S and Balbuena P B 2003 J. Phys. Chem. A 107 10370
|
[41] |
Yoon B, Häkkinen H, Landman U, Wörz, A S, Antonietti J M, Abbet S, Judai K and Heiz U 2005 Science 307 403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|