Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 073301    DOI: 10.1088/1674-1056/21/7/073301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Calculations of the vibrational frequency and isotopic shift of UF6 and U2F6

Zhang Yun-Guang(张云光) and Zha Xin-Wei(查新未)
School of Science, Xi'an Institute of Posts and Telecommunications, Xi'an 710121, China
Abstract  Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using revised Perdew--Burke--Enzerhof function with triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of stable U2F6 molecule with a multiply bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h. The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.
Keywords:  molecular structure      vibrational frequency      infrared intensity      isotopic shift  
Received:  14 November 2011      Revised:  02 December 2011      Accepted manuscript online: 
PACS:  33.15.Fm (Bond strengths, dissociation energies)  
  33.20.Tp (Vibrational analysis)  
Fund: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2009JM1007).
Corresponding Authors:  Zhang Yun-Guang     E-mail:  Zhangyunguang2008@yahoo.cn

Cite this article: 

Zhang Yun-Guang(张云光) and Zha Xin-Wei(查新未) Calculations of the vibrational frequency and isotopic shift of UF6 and U2F6 2012 Chin. Phys. B 21 073301

[1] Katz J J, Seaborg G T and Morss L R 1986 The Chemistry of the Actinide Elements (London: Chapman and Hall)
[2] Fuger J and Brown D 1975 J. Chem. Soc. Dalton Trans. 2256
[3] Aldridge J P, Brock E G, Filip H, Flicker H, Fox K, Galbraith H W, Holland R F, Kim K C, Krohn B J, Magnuson D J, Maier II W B, McDowell R S, Patterson C W, Person W B, Smith D F and Werner G K 1985 J. Chem. Phys. 83 34
[4] Gorokhov L N, Khodeev A M and Teplofiz Y S 1974 Vys. Temp. 12 1307
[5] Souter P F, Kushto G P, Andrews L and Neurock M J 1997 Am. Chem. Soc. 119 1682
[6] Hay P J, Wadt W R, Kahn L R and Phillips D H 1979 J. Chem. Phys. 71 1767
[7] Case D A and Yang C Y 1979 J. Phys. Chem. 72 3443
[8] Hay P J and Martin R L 1998 J. Chem. Phys. 109 3875
[9] Schreckenbach G, Hay P J and Martin R L 1999 J. Comput. Chem. 20 70
[10] Kaltsoyannis N and Bursten B E 1995 Inorg. Chem. 34 2735
[11] Schrechkenbach G 2000 Inorg. Chem. 39 1265
[12] Privalov T, Schimmelpfennig B, Wahlgren U and Grenthe I 2002 J. Phys. Chem. A 106 11277
[13] Jong W A de and Nieuwpoort W C 1996 Int. J. Quantum Chem. 58 203
[14] Gagliardi L, Willetts A, Skylaris C K, Handy N C, Spencer S, Ioannou A G and Simper A M 1998 J. Am. Chem. Soc. 120 11727
[15] Han Y K and Hirao K 2000 J. Chem. Phys. 113 7345
[16] Han Y K 2001 J. Comput. Chem. 22 2010
[17] García-Hern醤dez M, Lauterbach C, Kr黦er S, Matveev A and Rösch N 2002 J. Comput. Chem. 23 834
[18] Straka M, Patzschke M and Pyykkö P 2003 Theor. Chem. Acc. 109 332
[19] Kovacs A and Konings R J M 2004 J. Mol. Struct (Theochem) 684 35
[20] Batista E R, Martin R L, Hay P J, Peralta J E and Scuseria G E 2004 J. Chem. Phys. 121 2144
[21] Gagliardi L and Roos B O 2005 Nature 433 848
[22] Roos B O, Malmqvist P and Gagliardi L J 2006 Am. Chem. Soc. 128 17000
[23] Lee L, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[24] te Velde G, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J A, Snijders J G and Ziegler T 2001 J. Comput. Chem. 22 931
[25] Chen J, Meng D Q, Du J G, Jiang G, Gao T and Zhu Z H 2010 Acta. Phys. Sin. 59 1658 (in Chinese)
[26] Li Y C, Yang C L, Sun M Y, Li X X, An Y P and Wang M S 2010 Chin. Phys. B 19 083602
[27] van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597
[28] van Lenthe E, Baerends E J and Snijders J G 1994 J. Chem. Phys. 101 9783
[29] van Lenthe E, Ehlers A and Baerends E J 1999 J. Chem. Phys. 110 8943
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[32] Seip H M 1965 Acta Chem. Scand. 19 1955
[33] Kimura M, Schomaker V, Smith D W and Weinstock B 1967 J. Chem. Phys. 48 4001
[34] McDowell R S, Asprey L B and Paine R T 1974 J. Chem. Phys. 61 3571
[35] Paine R T, McDowell R S, Asprey L B and Jones L H 1976 J. Chem. Phys. 64 3081
[36] Song W Z and Gu D 1990 J. Nucl. Radiochem. 12 175
[1] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[2] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[3] Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields
Shang Shi(石尚), Fa-Cheng Jin(金发成), Bing-Bing Wang(王兵兵). Chin. Phys. B, 2019, 28(2): 023202.
[4] Probing the structure of multi-center molecules with odd-even high harmonics
Ning Su(苏宁), Shujuan Yu(于术娟), Weiyan Li(李卫艳), Shiping Yang(杨世平), Yanjun Chen(陈彦军). Chin. Phys. B, 2018, 27(5): 054213.
[5] Molecular structure and analytical potential energy function of SeCO
Zhang Heng (张恒), Tian Duan-Liang (田端亮), Yan Shi-Ying (阎世英). Chin. Phys. B, 2014, 23(9): 093101.
[6] Molecular structure dependence of acoustic nonlinearity parameter B/A for silicone oils
Zhang Zhe (张喆), Chen Gong (陈功), Zhang Dong (章东). Chin. Phys. B, 2014, 23(5): 054302.
[7] Structural, electronic and vibrational properties of indium oxide clusters
Xu Mao-Jie (徐茂杰), Niquad Yi (倪一), Li Zhen-Qing (李振庆), Wang Sheng-Li (王胜利), Liu Xiao-Hui (柳效辉), Dou Xiao-Ming (窦晓鸣). Chin. Phys. B, 2011, 20(6): 063101.
[8] Density-functional study of CO adsorbed on RhN (N=2–19) clusters
Tian Fu-Yang(田付阳) and Shen Jiang(申江) . Chin. Phys. B, 2011, 20(12): 123101.
[9] Relativistic density functional investigation of UX6 (= F, Cl, Br and I)
Zhang Yun-Guang(张云光) and Li Yu-De(李育德). Chin. Phys. B, 2010, 19(3): 033302.
[10] Triatomic wake effect and the determination of the molecular structure of HD2+ from the Coulomb explosion
Zhu Zhou-Sen(朱洲森), Miao Jing-Wei(缪竞威), Liao Xue-Hua(廖雪花), Miao Lei(缪蕾), Yuan Xue-Dong(袁学东), and Shi Mian-Gong(师免恭). Chin. Phys. B, 2009, 18(11): 4840-4845.
[11] The structure and the analytical potential energy function of NH2 (X2B1)
Liu Yu-Fang(刘玉芳), Jiang Li-Juan(蒋利娟), Ma Heng(马恒), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2008, 17(6): 2085-2089.
[12] Analytical potential energy function for the electronic states 2П1/2 and 2П3/2 of O2x(x=+1, --1)
Lü Bing(吕兵), Linghu Rong-Feng(令狐荣锋), Zhou Xun(周勋), Yang Xiang-Dong(杨向东), Zhu Zheng-He(朱正和), and Cheng Xin-Lu(程新路) . Chin. Phys. B, 2008, 17(5): 1738-1742.
[13] The molecular structure and the analytical potential energy function of S2- and S3-
Liu Yu-Fang(刘玉芳), Li Jun-Yu(李俊玉), Han Xiao-Qin(韩晓琴), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2007, 16(8): 2356-2360.
[14] Ab initio calculation on accurate analytic potential energy functions and harmonic frequencies of c3$\Sigma$+g and B1$\Pi$u states of dimer 7Li2
Yu Ben-Hai(余本海), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), Zhu Zun-Lue(朱遵略), Liu Yu-Fang(刘玉芳), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(8): 2371-2377.
[15] Ab initio calculation on the analytic potential energy functions for the state a3Σ+u and the state b3$\Pi$u of spin-aligned trimer 7Li2
Shi De-Heng (施德恒), Sun Jin-Feng (孙金锋), Yang Xiang-Dong (杨向东), Zhu Zun-Lue (朱遵略), Liu Yu-Fang (刘玉芳). Chin. Phys. B, 2005, 14(8): 1566-1570.
No Suggested Reading articles found!