|
|
Calculations of the vibrational frequency and isotopic shift of UF6 and U2F6 |
Zhang Yun-Guang(张云光)† and Zha Xin-Wei(查新未) |
School of Science, Xi'an Institute of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using revised Perdew--Burke--Enzerhof function with triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of stable U2F6 molecule with a multiply bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h. The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.
|
Received: 14 November 2011
Revised: 02 December 2011
Accepted manuscript online:
|
PACS:
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
33.20.Tp
|
(Vibrational analysis)
|
|
Fund: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2009JM1007). |
Corresponding Authors:
Zhang Yun-Guang
E-mail: Zhangyunguang2008@yahoo.cn
|
Cite this article:
Zhang Yun-Guang(张云光) and Zha Xin-Wei(查新未) Calculations of the vibrational frequency and isotopic shift of UF6 and U2F6 2012 Chin. Phys. B 21 073301
|
[1] |
Katz J J, Seaborg G T and Morss L R 1986 The Chemistry of the Actinide Elements (London: Chapman and Hall)
|
[2] |
Fuger J and Brown D 1975 J. Chem. Soc. Dalton Trans. 2256
|
[3] |
Aldridge J P, Brock E G, Filip H, Flicker H, Fox K, Galbraith H W, Holland R F, Kim K C, Krohn B J, Magnuson D J, Maier II W B, McDowell R S, Patterson C W, Person W B, Smith D F and Werner G K 1985 J. Chem. Phys. 83 34
|
[4] |
Gorokhov L N, Khodeev A M and Teplofiz Y S 1974 Vys. Temp. 12 1307
|
[5] |
Souter P F, Kushto G P, Andrews L and Neurock M J 1997 Am. Chem. Soc. 119 1682
|
[6] |
Hay P J, Wadt W R, Kahn L R and Phillips D H 1979 J. Chem. Phys. 71 1767
|
[7] |
Case D A and Yang C Y 1979 J. Phys. Chem. 72 3443
|
[8] |
Hay P J and Martin R L 1998 J. Chem. Phys. 109 3875
|
[9] |
Schreckenbach G, Hay P J and Martin R L 1999 J. Comput. Chem. 20 70
|
[10] |
Kaltsoyannis N and Bursten B E 1995 Inorg. Chem. 34 2735
|
[11] |
Schrechkenbach G 2000 Inorg. Chem. 39 1265
|
[12] |
Privalov T, Schimmelpfennig B, Wahlgren U and Grenthe I 2002 J. Phys. Chem. A 106 11277
|
[13] |
Jong W A de and Nieuwpoort W C 1996 Int. J. Quantum Chem. 58 203
|
[14] |
Gagliardi L, Willetts A, Skylaris C K, Handy N C, Spencer S, Ioannou A G and Simper A M 1998 J. Am. Chem. Soc. 120 11727
|
[15] |
Han Y K and Hirao K 2000 J. Chem. Phys. 113 7345
|
[16] |
Han Y K 2001 J. Comput. Chem. 22 2010
|
[17] |
García-Hern醤dez M, Lauterbach C, Kr黦er S, Matveev A and Rösch N 2002 J. Comput. Chem. 23 834
|
[18] |
Straka M, Patzschke M and Pyykkö P 2003 Theor. Chem. Acc. 109 332
|
[19] |
Kovacs A and Konings R J M 2004 J. Mol. Struct (Theochem) 684 35
|
[20] |
Batista E R, Martin R L, Hay P J, Peralta J E and Scuseria G E 2004 J. Chem. Phys. 121 2144
|
[21] |
Gagliardi L and Roos B O 2005 Nature 433 848
|
[22] |
Roos B O, Malmqvist P and Gagliardi L J 2006 Am. Chem. Soc. 128 17000
|
[23] |
Lee L, Yang W and Parr R G 1988 Phys. Rev. B 37 785
|
[24] |
te Velde G, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J A, Snijders J G and Ziegler T 2001 J. Comput. Chem. 22 931
|
[25] |
Chen J, Meng D Q, Du J G, Jiang G, Gao T and Zhu Z H 2010 Acta. Phys. Sin. 59 1658 (in Chinese)
|
[26] |
Li Y C, Yang C L, Sun M Y, Li X X, An Y P and Wang M S 2010 Chin. Phys. B 19 083602
|
[27] |
van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597
|
[28] |
van Lenthe E, Baerends E J and Snijders J G 1994 J. Chem. Phys. 101 9783
|
[29] |
van Lenthe E, Ehlers A and Baerends E J 1999 J. Chem. Phys. 110 8943
|
[30] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[31] |
Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
|
[32] |
Seip H M 1965 Acta Chem. Scand. 19 1955
|
[33] |
Kimura M, Schomaker V, Smith D W and Weinstock B 1967 J. Chem. Phys. 48 4001
|
[34] |
McDowell R S, Asprey L B and Paine R T 1974 J. Chem. Phys. 61 3571
|
[35] |
Paine R T, McDowell R S, Asprey L B and Jones L H 1976 J. Chem. Phys. 64 3081
|
[36] |
Song W Z and Gu D 1990 J. Nucl. Radiochem. 12 175
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|