Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114212    DOI: 10.1088/1674-1056/20/11/114212
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Joint nonlinearity and chromatic dispersion pre-compensation for coherent optical orthogonal frequency-division multiplexing systems

Qiao Yao-Jun(乔耀军), Liu Xue-Jun (刘学君), and Ji Yue-Feng (纪越峰)
Key Laboratory of Information Photonics and Optical Communications of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk-off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high-dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20×80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q > 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm·km) dispersion coefficients.
Keywords:  fibre optics      nonlinearity      chromatic dispersion      coherent optical orthogonal frequency-division multiplexing  
Received:  17 February 2011      Revised:  16 June 2011      Accepted manuscript online: 
PACS:  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01A345), the National Basic Research Program of China (Grant No. 2011CB302702), and the National Natural Science Foundation of China (Grant No. 60932004).

Cite this article: 

Qiao Yao-Jun(乔耀军), Liu Xue-Jun (刘学君), and Ji Yue-Feng (纪越峰) Joint nonlinearity and chromatic dispersion pre-compensation for coherent optical orthogonal frequency-division multiplexing systems 2011 Chin. Phys. B 20 114212

[1] Jansen S L, Morota I, Schenk T C W and Tanaka H 2008 J. Optical Networking 7 173
[2] Du L B and Lowery A J 2008 Proc. ECOC P.4.08
[3] Zhong X Q and Xiang A P 2010 Chin. Phys. B 19 064212
[4] Zhang J, Pan W, Yan L S and Luo B 2010 Acta Phys. Sin. 59 7002 (in Chinese)
[5] Yang A Y and Sun Y N 2010 Chin. Phys. B 19 114205
[6] Shieh W, Bao H and Tang Y 2008 Opt. Express 16 841
[7] Lowery A J, Du L B and Armstrong J 2007 J. Lightwave Technology 25 131
[8] Lowery A J, Wang S and Premaratne M 2007 Opt. Express 15 13282
[9] Lowery A J 2007 Photon. Tech. Lett. 19 1556
[10] Lowery A J 2007 Opt. Express 15 12965
[11] Liu X and Tkach R W 2009 Proc. OFC OTuO5
[12] Du L and Lowery A 2009 Proc. OFC OTuO1
[13] Jansen S L, Morita I and Tanaka H 2008 Proc. OFC PDP2
[14] Shieh W, Yi X, Ma Y and Yang Q 2008 J. Optical Networking 7 234
[15] Yi X, Shieh W and Tang Y 2007 Photon. Tech. Lett. 19 919
[1] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[2] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[3] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[4] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[5] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[6] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[7] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[8] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[9] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[10] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[11] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[12] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[13] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[14] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[15] Correction of walk-off-induced wavefront distortion for continuous-wave laser
Hongxin Zou(邹宏新), Guozhu Chen(陈国柱), Yue Wu(伍越), Yong Shen(沈咏), Qu Liu(刘曲). Chin. Phys. B, 2016, 25(9): 094211.
No Suggested Reading articles found!