Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094701    DOI: 10.1088/1674-1056/ab343d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Strong coupling between height of gaps and thickness of thermal boundary layer in partitioned convection system

Ze-Peng Lin(林泽鹏), Yun Bao(包芸)
Department of Mechanics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  

A direct numerical simulation (DNS) method is used to calculate the partitioned convection system with Ra number ranging from 107 to 2×109. Using the boundary layer thickness to normalize the height of gaps d, we find a strong consistency between the variation of the TD number (the average value of the temperature in each heat transfer channel is averaged after taking the absolute values) with the change of the height of gaps and the variation of the TD number with the change of Ra number in partitioned convection. For a given thickness of partition, heights of gaps are approximately equal to 0.5 or 1 time of the thermal boundary layer thickness λθ at different Ra numbers. TD number representing temperature characteristics is almost the constant value, which means that TD number is a function of d/λθ only. Analysis of local temperature field of area in gaps shows that the temperature distribution in the gaps are basically the same when d/λθ is certain. The heat transfer Nu number of the system at d/λθ≈ 0.5 is larger than that of d/λθ≈ 1, both of them have the same scaling law with Ra number and Nu~Ra0.25.

Keywords:  partitioned convection system      height of gaps      thermal boundary layer      TD number  
Received:  14 April 2019      Revised:  03 June 2019      Accepted manuscript online: 
PACS:  47.27.te (Turbulent convective heat transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11772362 and 11452002) and the Special Scientific Research Fund for Super Computing in the Joint Fund of the National Natural Science Foundation of China and the People's Government of Guangdong Province, China (Phase II, nsfc2015_570).

Corresponding Authors:  Yun Bao     E-mail:  stsby@mail.sysu.edu.cn

Cite this article: 

Ze-Peng Lin(林泽鹏), Yun Bao(包芸) Strong coupling between height of gaps and thickness of thermal boundary layer in partitioned convection system 2019 Chin. Phys. B 28 094701

[1] Lappa M 2005 Cryst. Res. Technol. 40 531
[2] Ahlers G, Grossmann S and Lohse D 2009 Rev. Mod. Phys. 81 503
[3] Bodenschatz E, Pesch W and Ahlers G 2000 Annu. Rev. Fluid. Mech. 32 709
[4] Xia K Q 2013 Theor. Appl. Mech. Lett. 3 052001
[5] Du Y B and Tong P 1998 Phys. Rev. Lett. 81 987
[6] Wei P, Chan T S, Ni R, Zhao X Z and Xia K Q 2014 J. Fluid Mech. 740 28
[7] Joshi P, Rajaei H, Kunnen R P J and Clercx H J 2017 J. Fluid Mech. 830 R3
[8] Kunnen R P, Clercx H J and Geurts B J 2006 Phys. Rev. E 74 056306
[9] Kooij G L, Botchev M A and Geurts B J 2015 Int. J. Heat & Fluid Flow 55
[10] Weiss S, Wei P and Ahlers G 2016 Phys. Rev. E 93 043102
[11] Guzman D N, Xie Y, Chen S, Rivas D F, Sun C, Lohse D and Ahlers G 2016 J. Fluid Mech. 787 331
[12] Cheng J P, Zhang H N, Cai W H, Li S N and Li F C 2017 Phys. Rev. E 96 013111
[13] Cheng J P, Cai W H, Zhang H N, Li F C, Shen L and Qian S Z 2019 Physics of Fluids 31 023105
[14] Bao Y, Chen J, Liu B F, She Z S, Zhang J and Zhou Q 2015 J. Fluid Mech. 784 R5
[15] Bao Y, Lin Z P and Ding G Y 2017 Computer Aided Engineering 26 57(in Chinese)
[16] Lin Z P and Bao Y 2018 Sci. Sin. Phys. Mech. & Astron. 48 054702
[17] Lin Z P and Bao Y 2018 Sci. Sin. Phys. Mech. & Astron. 48 104702(in Chinese)
[18] Bao Y and Lin Z P 2019 Sci. Sin. Phys. Mech. & Astron. 49 044701(in Chinese)
[19] Hajmohammadi M R 2018 Int. J. Refrigeration 88 16
[20] Fugmann H, Di Lauro P, Sawant A and Schnabel L 2018 Energies 11 1322
[21] Xue Y, Ge Z, Du X and Yang L 2018 Energies 11 1398
[22] Zhou Q, Stevens R J A M, Sugiyama K, Grossmann S, Lohse D and Xia K Q 2010 J. Fluid Mech. 664 297
[1] Characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh-Bénard convection
Ming-Wei Fang(方明卫), Jian-Chao He(何建超), Zhan-Chao Hu(胡战超), and Yun Bao(包芸). Chin. Phys. B, 2022, 31(1): 014701.
[2] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[3] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[4] Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow
Fu Jia (付佳), Yi Shi-He (易仕和), Wang Xiao-Hu (王小虎), He Lin (何霖), Ge Yong (葛勇). Chin. Phys. B, 2014, 23(10): 104702.
[5] Improvement of surface flux calculation:A study based on measurements over alpine meadow in the eastern Tibet Plateau in summer
Li Sen (李森), Zhong Zhong (钟中). Chin. Phys. B, 2014, 23(2): 029201.
[6] Scaling of heat transfer in gas–gas injector combustor
Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Gao Yu-Shan(高玉闪). Chin. Phys. B, 2011, 20(6): 064701.
[7] Simulation of natural convection under high magnetic field by means of the thermal lattice Boltzmann method
Zhong Cheng-Wen(钟诚文), Xie Jian-Fei(解建飞), Zhuo Cong-Shan(卓从山), Xiong Sheng-Wei(熊生伟), and Yin Da-Chuan(尹大川). Chin. Phys. B, 2009, 18(10): 4083-4093.
[8] SOME PROGRESS IN THE LATTICE BOLTZMANN MODEL
Feng Shi-de (冯士德), Tsutahara Michihisa, Ji Zhong-zhen (季仲贞). Chin. Phys. B, 2001, 10(7): 587-593.
No Suggested Reading articles found!