Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 018701    DOI: 10.1088/1674-1056/20/1/018701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Extended triplet set C343 of DNA sequences and its application to the p53 gene

Yan Yan-Yan(闫艳艳) and Zhu Ping(朱平)
School of Science, Jiangnan University, Wuxi 214122, China
Abstract  Recently, much research has indicated that more and more cancers pose a threat to human life. Cancers are caused by oncogenes. Many human oncogenes have been found and most of them are located on chromosomes. The discovery of the oncogene plays a significant role in the treatment of cancer. The p53 tumor suppressor gene has received much attention because it frequently mutates or deletes in tumor cells of most people. Thus, the study of oncogenes is significant. In order to establish the Galois field (GF(7)), the indefinite gene is introduced as D and oncogene is introduced as O, and P. Taking the polynomial coefficients a0, a1, a2 ∈ GF(7) and the bijective function f:GF(7) → {D,A,C,O,G,T,P}, where f(0) = D, f(1) = A, f(2) = C, f(3) = O, f(4) = G, f(5) = T, and f(6) = P, the bijective φ may be written as φ(a0 + a1x + a2x2). Based on the algebraic structure, we can not only analyse the DNA sequence of oncogenes, but also predict possible new cancers.
Keywords:  oncogene      gene encoding algebraic      polynomial      p53  
Received:  16 May 2010      Revised:  09 August 2010      Accepted manuscript online: 
PACS:  87.15.B- (Structure of biomolecules)  
  02.10.Dc  
Fund: Project supported in part by the Program for Innovative Research Team of Jiangnan University, China (Grant No. 2008 CX002).

Cite this article: 

Yan Yan-Yan(闫艳艳) and Zhu Ping(朱平) Extended triplet set C343 of DNA sequences and its application to the p53 gene 2011 Chin. Phys. B 20 018701

[1] Sánchez R, Perfetti L A, Grau R and Morgado E 2005 MATCH Commun. Math. Comput. Chem. 54 3
[2] Sánchez R and Grau R 2009 Math. Biosci. 221 60
[3] Sánchez R, Grau R and Morgado E 2006 Math. Biosci. 202 156
[4] Hornos J E and Hornos Y M 2006 Phys. Rev. Lett. 71 4401
[5] Sánchez R and Grau R 2006 Acta Biotheor. 54 27
[6] Sánchez R, Morgado E and Grau R 2005 J. Math. Biol. 51 431
[7] Sánchez R, Morgado E and Grau R 2004 MATCH Commun. Math. Comput. Chem. 52 29
[8] Zhu P, Tang X Q and Xu Z Y 2009 Chin. Phys. B 18 363
[9] Tang X Q, Zhu P and Cheng J X 2010 Pattern Recognition 43 3768
[10] Zhu P, Gao L and Xu Z Y 2009 Acta Phys. Sin. 58 4295 (in Chinese)
[11] Liu Q, Tang C and Ou Y Q 2010 Chin. Phys. B 19 040202
[12] Wang Q H, Zhang Y Y, Lai J C, Li Z H and He A Z 2007 Acta Phys. Sin. 56 1203 (in Chinese)
[13] Liu X F and Wang Y 2009 Chin. Phys. B 18 2690
[14] Bashford J D and Jarvis P D 2000 Biosystems 57 147
[15] Jako E, Ari E, Ittzes P, Horvath A and Podani J 2009 Molecular Phylogenetics and Evolution 52 887
[16] José M V, Morgado Ey R and Govezensky T 2005 Bull. Math. Biol. 67 1
[17] Piccirilli J A., Krauch T, Moroney S E and Beener S A 1990 Nature 343 33
[18] Switzer C Y, Moroney S E and Beener S A 1989 J. Am. Chem. Soc. 111 8322
[19] Jiang P Z, Shen X M and Huang H 2001Volumes of International Oncology 28 89 (in Chinese)
[20] Isobe M, Emanuel B S, Givol D, Oren M and Croce C M 1986 Nature 6057 84
[21] Matlashewski G, Lamb P, Pim D, Peacock J, Crawford L and Benchimol S 1984 Embo. J. 13 3257
[22] http://en.wikipedia.org/wiki/P53#Additional_images 2010
[23] Redei L 1967 Algebra Budapest: Akademiai Kiado vol.1
[24] http://mathworld.wolfram.com/PrimitivePolynomial.html 2010
[25] http://wims.unice.fr/wims/wims.cgi?session= JM7F6CF054. 2&+lang=cn&+module=tool%2Falgebra%2Fprimpoly.cn &+cmd=reply&+job=menu 2007
[26] Kupryjanczyk J, Bell D A, Dimeo D, Beauchamp R, Thor A D and Yandell D W 1993 Medical Sciences 99 4961
[27] Hollstein M C, Metcalf R A and Welsh J A 1990 Medical Sciences 87 9958
[28] Biramijamal F 2005 Journal of Sciences 16 3
[29] Yoshimasa M, Masahiro Y, Chiho O ,Mayumi I, Kauzue K, Makiko K and Yutaka O 2001 Chest 20 589
[30] Leroy K, Haioun C and Lepage E 2002 Annals of Oncology 13 1108
[31] http://p53.bii.a-star.edu.sg/aboutp53/dnaseq 2005
[32] http://www.medterms.com/script/main/art. asp?articlekey=4396 2010 endfootnotesize
[1] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[2] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[3] Ordered product expansions of operators (AB)±m with arbitrary positive integer
Shi-Min Xu(徐世民), Yu-Shan Li(李玉山), Xing-Lei Xu(徐兴磊)†, Lei Wang(王磊)‡, and Ji-Suo Wang(王继锁). Chin. Phys. B, 2020, 29(10): 100301.
[4] New useful special function in quantum optics theory
Feng Chen(陈锋), Hong-Yi Fan(范洪义). Chin. Phys. B, 2016, 25(8): 080303.
[5] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[6] Vibration and buckling analyses of nanobeams embedded in an elastic medium
S Chakraverty, Laxmi Behera. Chin. Phys. B, 2015, 24(9): 097305.
[7] Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method
Fan Hong-Yi (范洪义), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2015, 24(7): 070305.
[8] Generating function of product of bivariate Hermite polynomialsand their applications in studying quantum optical states
Fan Hong-Yi (范洪义), Zhang Peng-Fei (张鹏飞), Wang Zhen (王震). Chin. Phys. B, 2015, 24(5): 050303.
[9] A new kind of special function and its application
Fan Hong-Yi (范洪义), Wan Zhi-Long (万志龙), Wu Ze (吴泽), Zhang Peng-Fei (张鹏飞). Chin. Phys. B, 2015, 24(10): 100302.
[10] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[11] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[12] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2014, 23(8): 080301.
[13] New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics
Fan Hong-Yi (范洪义), Zhan De-Hui (展德会). Chin. Phys. B, 2014, 23(6): 060301.
[14] Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states
Lu Dao-Ming (卢道明), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(2): 020302.
[15] On the exact solutions to the long–short-wave interaction system
Fan Hui-Ling (范慧玲), Fan Xue-Fei (范雪飞), Li Xin (李欣). Chin. Phys. B, 2014, 23(2): 020201.
No Suggested Reading articles found!