Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060301    DOI: 10.1088/1674-1056/23/6/060301
GENERAL Prev   Next  

New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics

Fan Hong-Yi (范洪义), Zhan De-Hui (展德会)
Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.
Keywords:  generating function      even- and odd-Hermite polynomials      Hermite polynomial method      technique of integral within an ordered product of operators  
Received:  04 November 2013      Revised:  05 December 2013      Accepted manuscript online: 
PACS:  03.65.-a  
  02.30.Gp (Special functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175113) and the Fundamental Research Funds for the Central Universities of China (Grant No. WK2060140013).
Corresponding Authors:  Zhan De-Hui     E-mail:  dhzhan@mail.ustc.edu.cn

Cite this article: 

Fan Hong-Yi (范洪义), Zhan De-Hui (展德会) New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics 2014 Chin. Phys. B 23 060301

[1] Fan H Y 2003 J. Opt. B 5 R147
[2] Fan H Y, Zou H and Fan Y 2001 Int. J. Mod. Phys. A 16 369
[3] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[4] Yuan H C, Li H M and Xu X F 2013 Chin. Phys. B 22 060301
[5] Fan H Y, He R, Da C and Liang Z F 2013 Chin. Phys. B 22 080301
[6] Yang Y and Fan H Y 2013 Chin. Phys. B 22 020303
[7] Zhou J, Fan H Y and Song J 2012 Chin. Phys. B 21 070301
[1] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[2] New useful special function in quantum optics theory
Feng Chen(陈锋), Hong-Yi Fan(范洪义). Chin. Phys. B, 2016, 25(8): 080303.
[3] Degree distribution of random birth-and-death network with network size decline
Xiao-Jun Zhang(张晓军), Hui-Lan Yang(杨会兰). Chin. Phys. B, 2016, 25(6): 060202.
[4] The influence of phonon bath on the control of single photon
Zhang Wei (张威), Lu Hai-Tao (芦海涛). Chin. Phys. B, 2015, 24(6): 067806.
[5] Generating function of product of bivariate Hermite polynomialsand their applications in studying quantum optical states
Fan Hong-Yi (范洪义), Zhang Peng-Fei (张鹏飞), Wang Zhen (王震). Chin. Phys. B, 2015, 24(5): 050303.
[6] Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
Zhan De-Hui (展德会), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(12): 120301.
[7] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[8] Photon counting statistics in single multi-level quantum system
Wang Dong-Sheng(王东升) and Zheng Yu-Jun(郑雨军). Chin. Phys. B, 2010, 19(8): 083202.
[9] Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel
LÜ Cui-Hong(吕翠红), Fan Hong-Yi(范洪义), and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(12): 120303.
No Suggested Reading articles found!