Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080303    DOI: 10.1088/1674-1056/25/8/080303
GENERAL Prev   Next  

New useful special function in quantum optics theory

Feng Chen(陈锋)1, Hong-Yi Fan(范洪义)2
1 Department of Mathematics and Physics, Hefei University, Hefei 230601, China;
2 Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  

By virtue of the operator Hermite polynomial method[Fan H Y and Zhan D H 2014Chin. Phys. B 23 060301] we find a new special function which is useful in quantum optics theory, whose expansion involving both power-series and Hermite polynomials, i.e.,
(n!m!(-1)l/l!(n-l)!(m-l)!)Hn-l(x)ym-l≡ϑn, m(x, y).
By virtue of the operator Hermite polynomial method and the technique of integration within ordered product of operators (IWOP) we derive its generating function. The circumstance in which this new special function appears and is applicable is considered.

Keywords:  Hermite polynomial excitation state      IWOP method      new special function      generating function      operator Hermite polynomial method  
Received:  16 February 2016      Revised:  06 April 2016      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: 

Project supported by the Natural Science Fund of Education Department of Anhui Province, China (Grant No. KJ2016A590), the Talent Foundation of Hefei University, China (Grant No. 15RC11), and the National Natural Science Foundation of China (Grant Nos. 11247009 and 11574295).

Corresponding Authors:  Feng Chen     E-mail:  chenfeng@hfuu.edu.cn

Cite this article: 

Feng Chen(陈锋), Hong-Yi Fan(范洪义) New useful special function in quantum optics theory 2016 Chin. Phys. B 25 080303

[1] Mierzejewski J D and Luczka J 2008 Phys. Rev. A 77 042316
[2] Lopez C E, Romero G and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[3] Mazhar Ali 2010 J. Phys. B:At. Mol. Opt. Phys. 43 045504
[4] Fan H Y and Jiang T F 2007 Mod. Phys. Lett. B 21 475
[5] C Yangjian and C Chiyi 2007 J. Opt. Soc. Am. A 24 2394
[6] Fan H Y, He R, Da C and Liang Z F 2013 Chin. Phys. B 22 080301
[7] Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301
[8] Chen F and Fan H Y 2014 Chin. Phys. B 23 030304
[9] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[10] Fan H Y, Wan Z L and Wu Z 2015 Chin. Phys. B 24 100302
[11] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[12] de Peixoto F J G 2007 Eur. Phys. J. D 42 153
[1] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[2] Degree distribution of random birth-and-death network with network size decline
Xiao-Jun Zhang(张晓军), Hui-Lan Yang(杨会兰). Chin. Phys. B, 2016, 25(6): 060202.
[3] The influence of phonon bath on the control of single photon
Zhang Wei (张威), Lu Hai-Tao (芦海涛). Chin. Phys. B, 2015, 24(6): 067806.
[4] Generating function of product of bivariate Hermite polynomialsand their applications in studying quantum optical states
Fan Hong-Yi (范洪义), Zhang Peng-Fei (张鹏飞), Wang Zhen (王震). Chin. Phys. B, 2015, 24(5): 050303.
[5] A new kind of special function and its application
Fan Hong-Yi (范洪义), Wan Zhi-Long (万志龙), Wu Ze (吴泽), Zhang Peng-Fei (张鹏飞). Chin. Phys. B, 2015, 24(10): 100302.
[6] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2014, 23(8): 080301.
[7] New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics
Fan Hong-Yi (范洪义), Zhan De-Hui (展德会). Chin. Phys. B, 2014, 23(6): 060301.
[8] Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
Zhan De-Hui (展德会), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(12): 120301.
[9] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[10] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[11] Photon counting statistics in single multi-level quantum system
Wang Dong-Sheng(王东升) and Zheng Yu-Jun(郑雨军). Chin. Phys. B, 2010, 19(8): 083202.
No Suggested Reading articles found!