Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010503    DOI: 10.1088/1674-1056/20/1/010503
GENERAL Prev   Next  

Effects of potential functions on stochastic resonance

Li Jian-Long(李建龙)a) and Zeng Ling-Zao(曾令藻) b)†
a Department of Information Science and Electronic Engineering, Zhejiang University and Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China; b Institute of Soil and Water Resources and Environmental Science, Zhejiang University and Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310029, China
Abstract  In this paper, the effects of a bistable potential function $U(x)=-ax^2/2+b|x|^{2\gamma }/{(2\gamma)}$ on stochastic resonance (SR) is discussed. We investigate the effects of index $\gamma$ on the performance of the SR system with fixed parameters a and b, and with fixed potential barriers, respectively. To measure the performance of the SR system in the presence of an aperiodic input, the bit error rate is employed, as is commonly used in binary communications. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the shape of potential functions on SR and give a guidance of nonlinear systems in the application of information processing.
Keywords:  stochastic resonance      potential function      aperiodic signal  
Received:  19 July 2010      Revised:  14 August 2010      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.Ca (Noise)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60702022).

Cite this article: 

Li Jian-Long(李建龙) and Zeng Ling-Zao(曾令藻) Effects of potential functions on stochastic resonance 2011 Chin. Phys. B 20 010503

[1] Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10
[2] Nicolis C and Nicolis G 1982 Tellus 34 22
[3] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[4] Benzi R 2009 J. Stat. Mech. 2009 p01052
[5] Gammaitoni L, H"anggi P, Jung P and Marchesoni F 2009 Eur. Phys. J. B 69 1
[6] Gammaitoni L, H"anggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[7] Borromeo M and Marchesoni F 2010 Phys. Rev. E 81 012102
[8] Cao L and Wu D J 2006 Physica A 376 191
[9] Guo Y F, Xu Wei and Wang L 2010 Chin. Phys. B 19 040503
[10] Borromeo M and Marchesoni F 2009 Eur. Phys. J. B 69 23
[11] Sun S F and Lei B J 2008 Signal Processing 88 2085
[12] Zhu G Q, Ding K, Zhang Y and Zhao Y 2010 Acta Phys. Sin. 59 3001 (in Chinese)
[13] Leng Y G, Wang T Y, Guo Y and Wu Z Y 2007 Acta Phys. Sin. 56 30 (in Chinese)
[14] Jia Y, Yu S N and Li J R 2000 Phys. Rev. E 62 1869
[15] Li J L 2009 Chin. Phys. B 18 5196
[16] Li J L 2007 Chin. Phys. 16 340
[17] Li J L Bao R H and Xu B H 2003 Physica A 323 249
[18] Hu G, Gong D C, Qin G R, Weng X D and Yang C Y 1991 Commun. Theor. Phys. 16 149 endfootnotesize
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[6] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[7] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[8] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[9] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[10] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[11] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[12] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[13] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[14] Analysis of weak signal detection based on tri-stable system under Levy noise
Li-Fang He(贺利芳), Ying-Ying Cui(崔莹莹), Tian-Qi Zhang(张天骐), Gang Zhang(张刚), Ying Song(宋莹). Chin. Phys. B, 2016, 25(6): 060501.
[15] Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems
Jian Liu(刘健), You-Guo Wang(王友国), Qi-Qing Zhai(翟其清), Jin Liu(刘进). Chin. Phys. B, 2016, 25(10): 100501.
No Suggested Reading articles found!