Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097303    DOI: 10.1088/1674-1056/19/9/097303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The dispersion relations for surface plasmon in a nonlinear–metal–nonlinear dielectric structure

Liu Bing-Can(刘炳灿)a)b)†, Yu Li(于丽)a), Lu Zhi-Xin(逯志欣)a), and Zhang Kai(张恺)a)
a School of Science, Key Laboratory of Information Photonics and Optical Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Department of Fundamental Courses, Academy of Armored Force Engineering, Beijing 100072, China
Abstract  In the asymmetric and symmetric nonlinear–metal–nonlinear dielectric structures, this paper studies the analytic dispersion relation for surface plasmon in a system consisting of a thin metallic film covered on two sides media of intensity-dependent refractive indexes by applying a generalised first integral approach. Especially in the symmetric waveguide structure, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the squared magnitude of the electric field at the interface appears and alters the dispersion relations. Numerical results are compared to those from a certain approximate treatment.
Keywords:  dispersion relation      metal      surface plasmon      nonlinear  
Received:  20 November 2009      Revised:  22 January 2010      Accepted manuscript online: 
PACS:  7320M  
  5240D  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923202).

Cite this article: 

Liu Bing-Can(刘炳灿), Yu Li(于丽), Lu Zhi-Xin(逯志欣), and Zhang Kai(张恺) The dispersion relations for surface plasmon in a nonlinear–metal–nonlinear dielectric structure 2010 Chin. Phys. B 19 097303

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[3] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131
[4] Chen J J, Li Z and Gong Q H 2009 Chin. Phys. B 18 3535
[5] Xue W R, Guo Y N and Zhang W M 2009 Chin. Phys. B 18 2529
[6] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[7] Willets K A and van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
[8] Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D, Saraswat K C and Miller D A B 2008 Nat. Photonics 2 226
[9] Alú A and Engheta N 2008 J. Opt. A: Pure Appl. Opt. 10 093002
[10] Porto J A, Martin-Moreno L and Garcia-Vidal F J 2004 Phys. Rev. B 70 081402
[11] Wurtz G A and Zayats A V 2008 Laser & Photon Rev. 3 125
[12] Wurtz G A, Pollar R and Zayats A V 2006 Phys. Rev. Lett. 97 057402
[13] Min C J, Wang P and Jiao X J 2007 Opt. Express 15 12368
[14] Wang X L, Wang P, Min C J, Chen J X, Lu Y H and Ming H 2008 Chin. Phys. Lett. 25 4375
[15] Agranovich V M, Babichenko V S and Chernyak V Y 1980 Sov. Phys. JETP Lett. 32 512
[16] Stegeman G I, Seaton C T, Ariyasu J, Wallis R F and Maradudin A A 1985 J. Appl. Phys. 58 2453
[17] Mihalache D, Stegeman G I, Seaton C T, Wright E M, Zanoni R, Boardman A D and Twardowski T 1987 Opt. Lett. 12 187
[18] Huang J H, Chang R, Leung P T and Tsai D P 2009 Opt. Commun. 282 1412
[19] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[20] Smolyaninov I I 2005 Phys. Rev. Lett. 94 057403
[21] Smolyaninov I I 2006 Mod. Phys. Lett. B 20 321 endfootnotesize
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[4] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[5] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[6] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[11] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[12] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[13] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[14] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[15] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
No Suggested Reading articles found!