Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 096201    DOI: 10.1088/1674-1056/19/9/096201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elastic properties of spherically anisotropic piezoelectric composites

Wei En-Bo(魏恩泊)a)†, Gu Guo-Qing(顾国庆)b)‡, and Poon Ying-Ming(潘英明)c)*
a Institute of Oceanology and KLOCW, Chinese Academy of Sciences, Qingdao 266071, China; b School of Information Science and Technology, East China Normal University, Shanghai 200062, China; c Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hong Kong, China
Abstract  Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.
Keywords:  elasticity      piezoelectric composites      spherically anisotropy  
Received:  24 February 2009      Revised:  07 March 2010      Accepted manuscript online: 
PACS:  6220D  
  7760  
  7720  
Fund: Project supported by the Centre for Smart Materials of the Hong Kong Polytechnic University and a RGC Grant PolyU5015/06P (internal code B-Q996) of the HKSAR, and the National Natural Science Foundation of China (Grant Nos. 10374026 and 40876094).

Cite this article: 

Wei En-Bo(魏恩泊), Gu Guo-Qing(顾国庆), and Poon Ying-Ming(潘英明) Elastic properties of spherically anisotropic piezoelectric composites 2010 Chin. Phys. B 19 096201

[1] Barbert J R and Ting T C T 2007 J. Mech. Phys. Solids 55 1993
[2] Milton G W 2002 The Theory of Composites (Cambridge: Cambridge University Press)
[3] Nunan K C and Keller J B 1984 J. Mech. Phys. Solids 32 259
[4] Eshelby J D 1975 Proc. R. Soc. Lond. A 241 376
[5] Hill R 1965 J. Mech. Phys. Solids 13 213
[6] Christensen R M and Lo K H 1979 J. Mech. Phys. Solids 27 315
[7] Mori T and Tanaka K 1973 Acta Metallogr. 21 571
[8] Bruggeman D A G 1937 Annals of Physics 29 160
[9] Zheng Q S and Du D X 2001 J. Mech. Phys. Solids 49 2765
[10] Wang Y U, Jin Y M M and Khachaturyan A G 2002 J. Appl. Phys. 92 1351
[11] Ni Y and Chiang M Y M 2007 J. Mech. Phys. Solids 55 517
[12] Nemat-Nasser S and Taya M 1981 Quart. Appl. Math. 39 43
[13] Torquato S 1997 J. Mech. Phys. Solids 451421
[14] Cohen I 2004 J. Mech. Phys. Solids 52 2167
[15] Cohen I and Bergman D J 2003 Phys. Rev. B 68 24104
[16] Ding H J and Chen W Q 2001 Three Dimensional Problems of Piezoelectricity (New York: Nova Sciences)
[17] Olson T and Avellaneda M 1992 J. Appl. Phys. 71 4455
[18] Benveniste Y and Miton G W 2003 J. Mech. Phys. Solids 51 1773
[19] Wong C K and Shin F G 2005 J. Appl. Phys. 97 064111
[20] Wong C K, Poon Y M and Shin F G 2003 J. Appl. Phys. 93 487
[21] Benveniste Y and Dvorak G J 1992 J. Mech. Phys. Solids 40 1295
[22] Benveniste Y 1993 J. Appl. Mech. 60 270
[23] Chen T Y 1993 Mech. Res. Commun. 20 271
[24] Dunn M L and Taya M (1993) Int. J. Solids Struct. 30 161
[25] Wei E B, Poon Y M, Shin F G and Gu G Q 2006 Phys. Rev. B 74 014107
[26] Jiang B, Fang D N and Hwang K C 1999 Int. J. Solids Struct. 36 2707
[27] Gu G Q, Wei E B, Poon Y M and Shin F G 2007 Phys. Rev. B 76 064203
[28] Chen W Q 1999 Int. J. Solids Struct. 36 4317
[29] Chen W Q and Ding H J 1998 Acta Mech. Sin. 14 257
[30] Gu G Q, Wei E B and Xu C 2009 Physica B 404 4001
[31] Gu G Q and Yu K W 2003 J. Appl. Phys. 49 3376
[32] Wei E B, Gu G Q, PoonY M and Shin F G 2007 J. Appl. Phys. 102 074102
[33] Gu G Q and Yu K W 1992 Phys. Rev. B 46 4502
[34] Levy O and Bergman D J 1992 Phys. Rev. B 46 7189
[35] Hui P M, Chung P and Stroud D 1998 J. Appl. Phys. 84 3451 endfootnotesize
[1] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[2] Efficiency of collective myosin Ⅱ motors studied with an elastic coupling power-stroke ratchet model
Zi-Qing Wang(汪自庆), Jin-Fang Li(李金芳), Ying-Ge Xie(解迎革), Guo-Dong Wang(王国栋), Yao-Gen Shu(舒咬根). Chin. Phys. B, 2018, 27(12): 128701.
[3] Enhanced effect of dimension of receptor-ligand complex and depletion effect on receptor-mediated endocytosis of nanoparticles
Ye Liu(刘野), Qingqing Gao(高庆庆), Yijun Liu(刘益军), Chuang Zhao(赵闯), Zongliang Mao(毛宗良), Lin Hu(胡林), Yanhui Liu(刘艳辉). Chin. Phys. B, 2017, 26(12): 128704.
[4] First-principles calculations of structure and elasticity of hydrous fayalite under high pressure
Chuan-Yu Zhang(张传瑜), Xu-Ben Wang(王绪本), Xiao-Feng Zhao(赵晓凤), Xing-Run Chen(陈星润), You Yu(虞游), Xiao-Feng Tian(田晓峰). Chin. Phys. B, 2017, 26(12): 126103.
[5] Phenomenological description of semi-soft nematic elastomers
Wen-Wen Diao(刁文文), Qing-Tian Meng(孟庆田), Fang-Fu Ye(叶方富). Chin. Phys. B, 2016, 25(6): 066103.
[6] Reflection of thermoelastic wave on the interface of isotropic half-space and tetragonal syngony anisotropic medium of classes 4, 4/m with thermomechanical effect
Nurlybek A Ispulov, Abdul Qadir, M A Shah, Ainur K Seythanova, Tanat G Kissikov, Erkin Arinov. Chin. Phys. B, 2016, 25(3): 038102.
[7] Vibration and buckling analyses of nanobeams embedded in an elastic medium
S Chakraverty, Laxmi Behera. Chin. Phys. B, 2015, 24(9): 097305.
[8] Homogenization theory for designing graded viscoelastic sonic crystals
Qu Zhao-Liang (曲兆亮), Ren Chun-Yu (任春雨), Pei Yong-Mao (裴永茂), Fang Dai-Ning (方岱宁). Chin. Phys. B, 2015, 24(2): 024303.
[9] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[10] Elastic fields around a nanosized elliptichole in decagonal quasicrystals
Li Lian-He (李联和), Yun Guo-Hong (云国宏). Chin. Phys. B, 2014, 23(10): 106104.
[11] Block basis property of a class of 2×2 operator matrices and its application to elasticity
Song Kuan (宋宽), Hou Guo-Lin (侯国林), Alatancang (阿拉坦仓). Chin. Phys. B, 2013, 22(9): 094601.
[12] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[13] The influence of 3d-metal alloy additions on the elastic and thermodynamic properties of CuPd3
Huang Shuo (黄烁), Zhang Chuan-Hui (张川晖), Sun Jing (孙婧), Shen Jiang (申江). Chin. Phys. B, 2013, 22(8): 083401.
[14] Stress distribution and surface instability of an inclined granular layer
Zheng He-Peng (郑鹤鹏), Jiang Yi-Min (蒋亦民), Peng Zheng (彭政). Chin. Phys. B, 2013, 22(4): 040511.
[15] An improved interpolating element-free Galerkin method for elasticity
Sun Feng-Xin (孙凤欣), Wang Ju-Feng (王聚丰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(12): 120203.
No Suggested Reading articles found!