Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094601    DOI: 10.1088/1674-1056/22/9/094601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Block basis property of a class of 2×2 operator matrices and its application to elasticity

Song Kuan (宋宽), Hou Guo-Lin (侯国林), Alatancang (阿拉坦仓)
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems.
Keywords:  symplectic elasticity      block Schauder basis      separable Hamiltonian system      operator matrices  
Received:  12 March 2013      Revised:  02 April 2013      Accepted manuscript online: 
PACS:  46.25.-y (Static elasticity)  
  02.30.Jr (Partial differential equations)  
  02.30.Tb (Operator theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11361034 and 11371185), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111501110001), and the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2012MS0105 and 2013ZD01 ).
Corresponding Authors:  Hou Guo-Lin     E-mail:  smshgl@imu.edu.cn

Cite this article: 

Song Kuan (宋宽), Hou Guo-Lin (侯国林), Alatancang (阿拉坦仓) Block basis property of a class of 2×2 operator matrices and its application to elasticity 2013 Chin. Phys. B 22 094601

[1] Timoshenko S P and Woinowsky-Krieger S W 1959 Theory of Plates and Shells (New York: McGraw-Hill)
[2] Zhong W X 1991 Journal of Dalian University of Technology 31 373 (in Chinese)
[3] Zhong W X 1992 Acta Mech. Sin. 24 432 (in Chinese)
[4] Yao W A, Zhong W X and Lim C W 2009 Symplectic Elasticity (New Jersey: World Scientific) p. 5
[5] Lim C W, Cui S and Yao W A 2007 Int. J. Solids Struct. 44 5396
[6] Leung A Y T, Xu X S, Zhou Z H and Wu Y F 2009 Eng. Fract. Mech. 76 1866
[7] Zhao L, Chen W Q and Lü C F 2012 Mech. Mater. 54 32
[8] Alatancang and Wu D Y 2009 Sci. China Ser. A 52 173
[9] Hou G L and Alatancang 2012 Sci. China Math. 42 57
[10] Qi G W, Hou G L and Alatancang 2011 Chin. Phys. B 20 124601
[11] Wang H, Alatancang and Huang J J 2011 Chin. Phys. B 20 100202
[12] Huang J J, Alatancang and Wang H 2010 Chin. Phys. B 19 120201
[13] Wang H, Alatancang and Huang J J 2011 Acta Math. Sci. 31 1266
[14] Zhong W X and Zhong X X 1993 Numer. Meth. Part Differ. Equ. 9 63
[15] Liu Y and Li R 2010 Appl. Math. Modelling 34 856
[16] Li R, Zhong Y and Tian B 2011 Mech. Res. Commum. 38 111
[17] Pan B F, Li R, Su Y, Wang B and Zhong Y 2013 Appl. Math. Lett. 26 355
[18] Tretter C 2008 Spectral Theory of Block Operator Matrices and Applications (London: Imperial College Press)
[19] Hou G L and Alatancang 2009 Commun. Theor. Phys. 51 200
[20] Fabian M, Habala P, Hájek P, Montesinos V and Zizler V 2011 Banach Space Theory: the Basis for Linear and Nonlinear Analysis (New York: Springer) p. 182
[21] Wyss C 2010 arXiv:1005.5336
[22] Zhong Y and Zhang Y S 2005 Acta Mech. Solida Sin. 26 325 (in Chinese)
[1] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[2] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[3] Theoretics-directed effect of copper or aluminum content on the ductility characteristics of Al-based (Al3Ti,AlTi,AlCu,AlTiCu2) intermetallic compounds
Yong Li(李勇), Xiao-Juan Ma(马小娟), Qi-Jun Liu(刘其军), Ge-Xing Kong(孔歌星), Hai-Xia Ma(马海霞), Wen-Peng Wang(王文鹏), Yi-Gao Wang(汪贻高), Zhen Jiao(焦振), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂). Chin. Phys. B, 2016, 25(11): 113101.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] On the ascent of infinite dimensional Hamiltonian operators
Wu De-Yu (吴德玉), Chen Alatancang (陈阿拉坦仓). Chin. Phys. B, 2015, 24(8): 084601.
[6] Investigation of strain effect on the hole mobility in GOI tri-gate pFETs including quantum confinement
Qin Jie-Yu (秦洁宇), Du Gang (杜刚), Liu Xiao-Yan (刘晓彦). Chin. Phys. B, 2014, 23(10): 108501.
[7] An interpolating reproducing kernel particle method for two-dimensional scatter points
Qin Yi-Xiao (秦义校), Liu Ying-Ying (刘营营), Li Zhong-Hua (李中华), Yang Ming (杨明). Chin. Phys. B, 2014, 23(7): 070207.
[8] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[9] Stress distribution and surface instability of an inclined granular layer
Zheng He-Peng (郑鹤鹏), Jiang Yi-Min (蒋亦民), Peng Zheng (彭政). Chin. Phys. B, 2013, 22(4): 040511.
[10] A scaled boundary node method applied to two-dimensional crack problems
Chen Shen-Shen (陈莘莘), Li Qing-Hua (李庆华), Liu Ying-Hua (刘应华 ). Chin. Phys. B, 2012, 21(11): 110207.
[11] The complex variable meshless local Petrov–Galerkin method of solving two-dimensional potential problems
Yang Xiu-Li (杨秀丽), Dai Bao-Dong (戴保东), Zhang Wei-Wei (张伟伟). Chin. Phys. B, 2012, 21(10): 100208.
[12] An improved complex variable element-free Galerkin method for two-dimensional elasticity problems
Bai Fu-Nong(白福浓), Li Dong-Ming(李东明) Wang Jian-Fei(王健菲), and Cheng Yu-Min(程玉民) . Chin. Phys. B, 2012, 21(2): 020204.
[13] Completeness of eigenfunction systems for the product of two symmetric operator matrices and its application in elasticity
Qi Gao-Wa(齐高娃), Hou Guo-Lin(侯国林), and Alatancang(阿拉坦仓) . Chin. Phys. B, 2011, 20(12): 124601.
[14] Perturbation of symmetries for super-long elastic slender rods
Ding Ning(丁宁) and Fang Jian-Hui(方建会) . Chin. Phys. B, 2011, 20(12): 120201.
[15] On the completeness of eigen and root vector systems for fourth-order operator matrices and their applications
Wang Hua(王华), Alatancang (阿拉坦仓), and Huang Jun-Jie(黄俊杰) . Chin. Phys. B, 2011, 20(10): 100202.
No Suggested Reading articles found!