Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090508    DOI: 10.1088/1674-1056/19/9/090508
GENERAL Prev   Next  

Low dimensional chaos in the AT and GC skew profiles of DNA sequences

Zhou Qian(周茜) and Chen Zeng-Qiang(陈增强)
Department of Automation, Nankai University, Tianjin 300071, China
Abstract  This paper investigates the existence of low-dimensional deterministic chaos in the AT and GC skew profiles of DNA sequences. It has taken DNA sequences from eight organisms as samples. The skew profiles are analysed using continuous wavelet transform and then nonlinear time series methods. The invariant measures of correlation dimension and the largest Lyapunov exponent are calculated. It is demonstrated that the AT and GC skew profiles of these DNA sequences all exhibit low dimensional chaotic behaviour. It suggests that chaotic properties may be ubiquitous in the DNA sequences of all organisms.
Keywords:  chaos      phase space reconstruction      DNA sequences      AT and GC skew profiles  
Received:  27 January 2010      Revised:  16 February 2010      Accepted manuscript online: 
PACS:  0545  
  8715  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 60774088), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090031110029), and the Foundation of the Application Base and Frontier Technology Research Project of Tianjin (Grant No. 08JCZDJC21900).

Cite this article: 

Zhou Qian(周茜) and Chen Zeng-Qiang(陈增强) Low dimensional chaos in the AT and GC skew profiles of DNA sequences 2010 Chin. Phys. B 19 090508

[1] Song Y Z 2007 Chin. Phys. 16 1918
[2] Song Y Z, Zhao G Z and Qi D L 2006 Chin. Phys. 15 2266
[3] Liu C X 2007 Chin. Phys. 16 3279
[4] Zhang Y H, Qi G Y, Liu W L and Yan Y 2006 Acta Phys. Sin. 55 3307 (in Chinese)
[5] Xu Z, Liu C X and Yang T 2010 Acta Phys. Sin. 59 131 (in Chinese)
[6] Wang F Z, Qi G Y, Chen Z Q and Yuan Z Z 2007 Acta Phys. Sin. 56 3137 (in Chinese)
[7] Innocenti G, Morelli A, Genesio R and Torcini A 2007 Chaos 17 043128
[8] Deng B and Hines G 2002 Chaos 12 533
[9] Benincá E, Huisman J, Heerkloss R, Jõhnk K D, Branco P, Van Nes E H, Scheffer M and Ellner S P 2008 Nature 451 822
[10] Stone L and He D 2007 Journal of Theoretical Biology 248 382
[11] Elbert T, Ray W J, Kowalik Z J, Skinner J E, Graf K E and Birbaumer N 1994 Physiological Reviews 74 1
[12] Robertson R and Combs A 1995 Chaos Theory in Psychology and the Life Sciences (Mahwah, NJ: Lawrence Erlbaum Associates)
[13] http://en.wikipedia.org/wiki/DNA
[14] Watson J D and Crick F H C 1953 Nature 171 737
[15] Segal E, Fondufe-Mittendorf Y, Chen L Y, Thastrom A, Field Y, Moore I K, Wang J P Z and Widom J 2006 Nature 442 772
[16] Yu Z G, Vo A, Gong Z M and Long S C 2002 Chin. Phys. Letters 13 1313
[17] Redon R, Ishikawa S, Fitch K R, Feuk L, Perry G H, Andrews T D, Fiegler H, Shapero M H, Carson A R, Chen W, Cho E K, Dallaire S, Freeman J L, Gonzalez J R, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald J R, Marshall C R, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville M J, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad D F, Estivill X, Tyler-Smith C, Carter N P, Aburatani H, Lee C, Jones K W, Scherer S W and Hurles M E 2006 Nature 444 444
[18] Nicolaya S, Brodie of Brodie E B, Touchonb M, d'Aubenton-Carafab Y, Thermesb C and Arneodoa A 2004 Physica A 342 270
[19] Nicolaya S, Argoul F, Touchon M, d'Aubenton-Carafa Y, Thermes C and Arneodo1 A 2004 Phys. Rev. Lett. 93 108101
[20] Lobry J R 1996 Mol. Biol. Evol. 13 660
[21] Grigoriev A 1998 Nucleic Acids Research 26 22860
[22] Gao F and Zhang C T 2008 BMC Bioinformatics 9 79
[23] Takens F 1981 Detecting Strange Attractors in Turbulence (Berlin: Springer) p366
[24] Casdagli M, Eubank S, Farmer J D and Gibson J 1991 Physica D 51 52
[25] Frazer A M and Swinney H L 1986 Phys. Rev. A 33 1134
[26] Kennel M, Brown R and Abarbanel H 1992 Phys. Rev. A 45 3403
[27] Grassberger P and Procaccia I 1983 Physica D 9 189
[28] Schreiber T, Kantz H and Hegger R 1999 Chaos 9 413 endfootnotesize
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!