Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080506    DOI: 10.1088/1674-1056/19/8/080506
GENERAL Prev   Next  

Projective synchronization of spatiotemporal chaos in a weighted complex network

Lü Ling(吕翎)a)†, Chai Yuan(柴元)a), and Luan Ling(栾玲)b)
a College of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; b Physical Science and Technology Institute, Dalian University, Dalian 116622, China
Abstract  Projective synchronization of a weighted complex network is studied in which nodes are spatiotemporal chaos systems and all nodes are coupled not with the nonlinear terms of the system but through a weighted connection. The range of the linear coefficient matrix of separated configuration,when the synchronization is implemented, is determined according to Lyapunov stability theory. It is found that projective synchronization can be realized for unidirectional star-connection even if the coupling strength between the nodes is a given arbitrary weight value. The Gray–Scott models having spatiotemporal chaos behaviours are taken as nodes in the weighted complex network, and simulation results of spatiotemporal synchronization show the effectiveness of the method.
Keywords:  weighted network      spatiotemporal chaos      projective synchronization      Lyapunov stability theory  
Received:  12 January 2010      Revised:  03 February 2010      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 20082147), and the Innovative Team Program of Liaoning Educational Committee, China (Grant No. 2008T108).

Cite this article: 

Lü Ling(吕翎), Chai Yuan(柴元), and Luan Ling(栾玲) Projective synchronization of spatiotemporal chaos in a weighted complex network 2010 Chin. Phys. B 19 080506

[1] Ravasz E and Barab'asi A L 2003 Phys. Rev. E 67 26112
[2] Stelling J, Klamt S, Bettenbrock K, Schuster S and Gilles E D 2002 Nature 420 190
[3] Strogatz S H 2001 Nature 410 268
[4] Zhang Q Z and Li Z K 2009 Chin. Phys. B 18 2176
[5] Meng G F, ChenY H and Peng Y H 2009 Chin. Phys. B 18 2194
[6] V'azquez A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 66130
[7] Guo L X, Xu Z Y and Hu M F 2008 Chin. Phys. B 17 836
[8] Haken H 2005 Physica D 205 1
[9] Lü L and Xia X L 2009 Acta Phys. Sin. 58 814 (in Chinese)
[10] Li Y, Lü L and Luan L 2009 Acta Phys. Sin. 58 4463 (in Chinese)
[11] Newman M E J, Strogatz S H and Watts D J 2001 Phys. Rev. E 64 26118
[12] Watts D J and Strogatz S H 1998 Nature 393 440
[13] Albert R, Jeong H and Barab'asi A L 1999 Nature 401 130
[14] Hennig D and Schimansky-Geier L 2008 Physica A 387 967
[15] Yu W W and Cao J D 2007 Physica A 373 252
[16] Lu W and Chen T 2004 Physica D 198 148
[17] Hung Y C, Huang Y T, Ho M C and Hu C K 2008 Phys. Rev. E 77 16202
[18] Atay F M, Jost J and Wende A 2004 Phys. Rev. Lett. 92 144101
[19] L"u J H, Yu X H and Chen G R 2004 Physica A 334 281
[20] Han X P and Lu J A 2007 Sci. Chin. F 50 615
[21] Barrat A, Barth'elemy M and Vespignani A 2004 Phys. Rev. Lett. 92 228701
[22] Li W and Cai X 2004 Phys. Rev. E 69 46106
[23] Lu X B, Wang X F and Fang J Q 2006 Physica A 371 841
[24] Fang J Q, Bi Q, Li Y, Lu X B and Liu Q 2007 Sci. Chin. G 50 379
[25] Xiang L Y, Liu Z X, Chen Z Q and Yuan Z Z 2008 Sci. Chin. F 51 511
[26] Lü L 2000 Nonlinear Dynamics and Chaos (Dalian: Dalian Publishing House) (in Chinese)
[27] Pearson J E 1993 Science 261 189
[1] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[2] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[3] Exploring evolutionary features of directed weighted hazard network in the subway construction
Gong-Yu Hou(侯公羽), Cong Jin(靳聪), Zhe-Dong Xu(许哲东), Ping Yu(于萍), Yi-Yi Cao(曹怡怡). Chin. Phys. B, 2019, 28(3): 038901.
[4] A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption
Xingyuan Wang(王兴元), Yu Wang(王宇), Siwei Wang(王思伟), Yingqian Zhang(张盈谦), Xiangjun Wu(武相军). Chin. Phys. B, 2018, 27(11): 110502.
[5] Entropy-based link prediction in weighted networks
Zhongqi Xu(许忠奇), Cunlai Pu(濮存来), Rajput Ramiz Sharafat, Lunbo Li(李伦波), Jian Yang(杨健). Chin. Phys. B, 2017, 26(1): 018902.
[6] Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions
Adel Ouannas, Giuseppe Grassi. Chin. Phys. B, 2016, 25(9): 090503.
[7] Empirical investigation of topological and weighted properties of a bus transport network from China
Shu-Min Feng(冯树民), Bao-Yu Hu(胡宝雨), Cen Nie(聂涔), Xiang-Hao Shen(申翔浩), Yu-Sheng Ci(慈玉生). Chin. Phys. B, 2016, 25(3): 030504.
[8] Secure communication based on spatiotemporal chaos
Ren Hai-Peng (任海鹏), Bai Chao (白超). Chin. Phys. B, 2015, 24(8): 080503.
[9] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[10] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[11] A self-adapting image encryption algorithm based on spatiotemporal chaos and ergodic matrix
Luo Yu-Ling (罗玉玲), Du Ming-Hui (杜明辉). Chin. Phys. B, 2013, 22(8): 080503.
[12] Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance
Wang Shu-Guo (王树国), Zheng Song (郑松). Chin. Phys. B, 2013, 22(7): 070503.
[13] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan (李科赞), He En (何恩), Zeng Zhao-Rong (曾朝蓉), Chi K. Tse (谢智刚). Chin. Phys. B, 2013, 22(7): 070504.
[14] Stability analysis and control synthesis of uncertain Roesser-type discrete-time two-dimensional systems
Wang Jia (王佳), Hui Guo-Tao (会国涛), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2013, 22(3): 030206.
[15] Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos
Zhang Fang-Fang (张芳芳), Liu Shu-Tang (刘树堂), Yu Wei-Yong (余卫勇). Chin. Phys. B, 2013, 22(12): 120505.
No Suggested Reading articles found!