Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080206    DOI: 10.1088/1674-1056/19/8/080206
GENERAL Prev   Next  

Model for cascading failures with adaptive defense in complex networks

Hu Ke(胡柯), Hu Tao(胡涛) and Tang Yi(唐翌)
Department of Physics and Institute of Modern Physics, Xiangtan University,Xiangtan 411105, China
Abstract  This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.
Keywords:  cascading failure      adaptive defense      complex network  
Received:  08 December 2009      Revised:  23 December 2009      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 30570432) and the General Project of Hunan Provincial Educational Department of China (Grant No. 07C754).

Cite this article: 

Hu Ke(胡柯), Hu Tao(胡涛) and Tang Yi(唐翌) Model for cascading failures with adaptive defense in complex networks 2010 Chin. Phys. B 19 080206

[1] Holme P and Kim B J 2002 Phys. Rev. E 65 066109
[2] Holme P 2002 Phys. Rev. E 66 036119
[3] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102(R)
[4] Moreno Y, Gmez J B and Pacheco A F 2002 Europhys. Lett. 58 630
[5] Sachtjen M L, Carreras B A and Lynch V E 2000 Phys. Rev. E 61 4877
[6] Jacobson V 1988 Comput. Commun. Rev. 18 314
[7] Guimer`a R, Arenas A, Diaz-Guilera A and Giralt F 2002 Phys. Rev. E 66 026704
[8] More information can be found in the web site http://www.ofta.gov.hk/en/DATASTAT/ibccds.html
[9] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[10] Simonsen I, Buzna L, Peters K, Bornholdt S and Helbing D 2008 Phys. Rev. Lett. 100 218701
[11] Heide D, Sch"afer M and Greiner M 2008 Phys. Rev. E 77 056103
[12] Wang B and Kim B J 2007 Europhys. Lett. 78 48001
[13] Crucitti P, Latora V and Marchiori M 2004 Phys. Rev. E 69 045104(R)
[14] Moreno Y, Pastor-Satorras R, Vazquez A and Vespignani A 2003 Europhys. Lett. 62 292
[15] Wang W X and Chen G 2008 Phys. Rev. E 77 026101
[16] Zhao L, Park K and Lai Y C 2004 Phys. Rev. E 70 035101(R)
[17] Zhao L, Park K, Lai Y C and Ye N 2005 Phys. Rev. E 72 025104(R)
[18] Kinney R, Crucitti P, Albert R and Latora V 2005 Eur. Phys. J. B 46 101
[19] Kim D H and Motter A E 2008 New Journal of Physics 10 053022
[20] Zhao X M and Gao Z Y 2007 Chin. Phys. Lett. 24 283
[21] Wu J J, Gao Z Y, Sun H J and Huang H J 2006 Europhys. Lett. 74 560
[22] Zheng J F, Gao Z Y and Zhao X M 2007 Europhys. Lett. 79 58002
[23] Zheng J F, Gao Z Y and Zhao X M 2007 Physica A 373 873
[24] Motter A E 2004 Phys. Rev. Lett. 93 098701
[25] Huang L, Lai Y C and Chen G 2008 Phys. Rev. E 78 036116
[26] Gallos L K, Cohen R, Argyrakis P, Bunde A and Havlin S 2005 Phys. Rev. Lett. 94 188701
[27] Sch"afer M, Scholz J and Greiner M 2006 Phys. Rev. Lett. 96 108701
[28] Li P, Wang B H, Sun H, Gao P and Zhou T 2008 Eur. Phys. J. B 62 101
[29] Yang R, Wang W X, Lai Y C and Chen G 2009 Phys. Rev. E 79 026112
[30] Newth D and Ash J 2005 Complexity International 11 125
[31] Latora V and Marchiori M 2001 Phys. Rev. Lett. 87 198701
[32] Latora V and Marchiori M 2007 New Journal of Physics 9 188 %is reduced by a factor depending on the degrees and depths of the respective
[33] Nagurney A and Qiang Q 2007 Europhys. Lett. 79 38005
[34] Vragov'c I, Louis E and D'hi az-Guilera A 2005 Phys. Rev. E 71 036122
[35] Murray J D 1990 Mathematical Biology (Heidelberg: Springer)
[36] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[37] Zhao H and Gao Z Y 2007 Eur. Phys. J. B 57 95
[38] Barab'asi A L and Albert R 1999 Science 286 509
[39] Watts D J and Strogatz S H 1998 Nature (London) 393 440
[40] Goh K I, Kahng B and Kim D 2001 Phys. Rev. Lett. 87 278701
[41] Ohira T and Sawatari R 1998 Phys. Rev. E 58 193
[42] Holme P 2003 Adv. Complex Syst. 6 163
[43] Cohen R, Havlin S and Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Analysis of overload-based cascading failure in multilayer spatial networks
Min Zhang(张敏), Xiao-Juan Wang(王小娟), Lei Jin(金磊), Mei Song(宋梅), Zhong-Hua Liao(廖中华). Chin. Phys. B, 2020, 29(9): 096401.
No Suggested Reading articles found!