Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077305    DOI: 10.1088/1674-1056/19/7/077305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Properties of C60 thin film transistor based on polystyrene

Zhou Jian-Lin (周建林)a, Niu Qiao-Li (牛巧利)b
a Department of Electronic Engineering, College of Communication and Electronics, Chongqing University, Chongqing 400044, China; b Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China
Abstract  This paper reports that the n-type organic thin-film transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V·s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.
Keywords:  organic thin film transistors      n-type      C60      polystyrene  
Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.65.+h (Molecular electronic devices)  
  61.41.+e (Polymers, elastomers, and plastics)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60676033).

Cite this article: 

Zhou Jian-Lin (周建林), Niu Qiao-Li (牛巧利) Properties of C60 thin film transistor based on polystyrene 2010 Chin. Phys. B 19 077305

[1] Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W and Weber W 2002 J. Appl. Phys. 92 5259
[2] Jang Y, Kim D H, Park Y D, Cho J H, Hwang M and Cho K 2006 Appl. Phys. Lett. 88 072101
[3] Seo H S, Jang Y S, Zhang Y, Abthagir P S and Choi J H 2008 Organic Electronics 9 432
[4] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Song D D, Zhu H N, Li S Y, Huang J Y, Huang H and Xu X R 2008 Chin. Phys. B 17 1887
[5] Zhou L, Wanga A, Wu S C, Sun J, Park S and Jackson T N 2006 Appl. Phys. Lett. 88 083502
[6] Tatemichi S, lchikawa M, Koyama T and Taniguchi Y 2006 Appl. Phys. Lett. 89 112108
[7] Jang J, Kim J K, Park N and Kim J J 2008 Organic. Electronics 9 481
[8] W?bkenberg P H, Bradley D D C, Kronholm D, Hummelen J C, de Leeuw D M, C?lle M and Anthopoulos T D 2008 Synthetic Metals 158 468
[9] Haddon R C, Perel A S, Morris R C, Palstra T T M, Hebard A F and Fleming A M 1995 Appl. Phys. Lett. 67 121
[10] Anthopoulos T D, Singh B, Marjanovic N, Sariciftci N S, Ramil A M, Sitter H, C"olle M and de Leeuw D M 2006 Appl. Phys. Lett. 89 213504
[11] Zhang X H, Domercq B and Kippelen B 2007 Appl. Phys. Lett. 91 092114
[12] Horiuchi K, Nakada K, Uchino S, Hashii S, Hashimoto A, Aoki N, Ochiai N and Shimizu M 2002 Appl. Phys. Lett. 81 1911
[13] Liu Y R, Wang Z X, Yu J L and Xu H H 2009 Acta Phys. Sin. 58 8566 (in Chinese)
[14] Lu Y, Lee W H, Lee H S, Jang Y and Cho K 2009 Appl. Phys. Lett. 94 113303
[15] Steudel S, Vusser S D, Jonge S D, Janssen D, Verlaak S, Genoe J and Heremans P 2004 Appl. Phys. Lett. 85 4400
[16] Kubozono Y, Nagano T, Haruyama Y, Kuwahara E, Takayanagi T, Ochi K and Fujiwara A 2005 Appl. Phys. Lett. 87 143506
[17] Kobayashi S, Takenobu T, Mori S, Fujiwara A and Lwasa Y 2003 Appl. Phys. Lett. 82 4581
[18] Itaka K, Yamashiro M, Yamaguchi J, Haemori M, Yaginuma S, Matsumoto Y, Kondo M and Koinuma H 2006 Adv. Mater. 18 1713
[19] Optiz A, Bronner M and Br"utting W 2007 J. Appl. Phys. 101 063709
[20] Singh Th B, Marjanovic N, Stadler P, Auinger M, Matt G J, G"unes S, Sariciftci N S, Schw"odiauer R and Bauer S 2005 J. Appl. Phys. 97 083714
[21] Takahashi N, Maeda A, Uno K, Shikoh E, Yamamoto Y, Hori H, Kubozono Y and Fujiwara A 2007 Appl. Phys. Lett. 90 083503
[22] Chua L L, Zaumseil J, Chang J F, Ou E C W, Ho P K H, Sirringhaus H R and Friend H 2005 Nature 434 194
[23] Li C H, Pan F, Wang X J, Wang L J, Wang H, Wang H B and Yan D H 2009 Organic Electronics 10 948
[1] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[2] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[3] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[4] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[5] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[6] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[7] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[8] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[9] Structural stabilities and electrical properties of Ba8Ga16-xCuxSn30 single crystals under high temperatures
Jin-Song Wang(王劲松), Feng Cheng(程峰), Hong-Xia Liu(刘红霞), De-Cong Li(李德聪), Lan-Xian Shen(申兰先), Shu-Kang Deng(邓书康). Chin. Phys. B, 2016, 25(6): 067402.
[10] Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance
Yu-Ru Wang(王裕如), Yi-He Liu(刘祎鹤), Zhao-Jiang Lin(林兆江), Dong Fang(方冬), Cheng-Zhou Li(李成州), Ming Qiao(乔明), Bo Zhang(张波). Chin. Phys. B, 2016, 25(2): 027305.
[11] Moment stability for a predator-prey model with parametric dichotomous noises
Jin Yan-Fei (靳艳飞). Chin. Phys. B, 2015, 24(6): 060502.
[12] Effects of two types of noise and switching on the asymptotic dynamics of an epidemic model
Xu Wei (徐伟), Wang Xi-Ying (王喜英), Liu Xin-Zhi (刘新芝). Chin. Phys. B, 2015, 24(5): 050204.
[13] Boron implanted emitter for n-type silicon solar cell
Liang Peng (梁鹏), Han Pei-De (韩培德), Fan Yu-Jie (范玉洁), Xing Yu-Peng (邢宇鹏). Chin. Phys. B, 2015, 24(3): 038801.
[14] Intermediate sp-hybridization for chemical bonds in nonplanar covalent molecules of carbon
Cao Ze-Xian (曹则贤). Chin. Phys. B, 2014, 23(6): 063102.
[15] Electronic structures of halogen-doped Cu2O based on DFT calculations
Zhao Zong-Yan (赵宗彦), Yi Juan (易娟), Zhou Da-Cheng (周大成). Chin. Phys. B, 2014, 23(1): 017401.
No Suggested Reading articles found!