Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060502    DOI: 10.1088/1674-1056/24/6/060502
GENERAL Prev   Next  

Moment stability for a predator-prey model with parametric dichotomous noises

Jin Yan-Fei (靳艳飞)
Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
Abstract  In this paper, we investigate the solution moment stability for a Harrison-type predator–prey model with parametric dichotomous noises. Using the Shapiro–Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses.
Keywords:  dichotomous noise      a Harrison-type predator-prey model      moment stability  
Received:  06 October 2014      Revised:  07 January 2015      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11272051).
Corresponding Authors:  Jin Yan-Fei     E-mail:  jinyf@bit.edu.cn
About author:  05.40.-a; 02.50.-r

Cite this article: 

Jin Yan-Fei (靳艳飞) Moment stability for a predator-prey model with parametric dichotomous noises 2015 Chin. Phys. B 24 060502

[1] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (Cambridge: Cambridge University Press)
[2] Berryman A A 1992 Ecology 73 1530
[3] Thieme H R 2003 Mathematics in Population Biology (Princeton: Princeton University Press)
[4] Yoshida T, Jones L E, Ellner S P, Fussmann G F and Hairston N G 2003 Nature 424 303
[5] Sanchez A and Gore J 2013 PLoS Biol 11 1001547
[6] Holling C S 1965 Mem. Entomol. Soc. Can. 45 1
[7] Ruan S 2009 Math. Model. Nat. Phenom. 4 140
[8] Arditi R and Ginzburg L R 1989 J. Theor. Biol. 139 311
[9] Saha T and Chakrabarti C 2009 J. Math. Anal. Appl. 358 389
[10] DeAngelis D L, Goldstein R A and O'Neill R V 1975 Ecology 56 881
[11] Beddington J R 1975 J. Anim. Ecol. 44 331
[12] Harrison G W 1995 Ecology 76 357
[13] Skalski G T and Gilliam J F 2001 Ecology 82 3083
[14] Rao F 2011 J. Biomath. 26 609
[15] May R M 2001Stability and Complexity in Model Ecosystems (New Jersey: Princeton University Press)
[16] Mao X Y 1994 Syst. Control Lett. 23 279
[17] Lv J L and Wang K 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4037
[18] Saha T and Banerjee M 2008 Differential Equations and Dynamical Systems 16 225
[19] Rao F and Wang W M 2012 J. Stat. Mech. 3 03014
[20] Sun G Q, Jin Z, Li L and Liu Q X 2009 J. Biol. Phys. 35 185
[21] Li L and Jin Z 2012 Nonlinear Dyn. 67 1737
[22] Gardiner C W 1985 Handbook of Stochastic Methods, 2nd edn. (Berlin: Springer-Verlag)
[23] Barik D, Ghosh P K and Ray D S 2006 J. Stat. Mech. 3 03010
[24] Jin Y F, Xu W, Li W and Xu M 2005 J. Phys. A: Math. Gen. 38 3733
[25] Xu Y, Jin X Q, Zhang H Q and Yang T T 2013 J. Stat. Phys. 152 753
[26] Xu Y, Wu J, Zhang H Q and Ma S J 2012 Nonlinear Dyn. 70 531
[27] Li J H 2014 Chin. Phys. Lett. 31 030502
[28] Fulinski A 1995 Phys. Rev. E 52 4523
[29] Shapiro V E and Loginov V M 1978 Physica A 91 563
[30] Mankin R, Ainsaar A and Reiter E 1999 Phys. Rev. E 60 1374
[31] Xu Y, Duan J Q and Xu W 2011 Physica D 240 1395
[1] Entropic stochastic resonance in a confined structure driven by dichotomous noise and white noises
Guo Feng (郭锋), Cheng Xiao-Feng (程晓锋), Li Shao-Fu (李少甫), Cao Wen (曹文), Li Heng (黎恒). Chin. Phys. B, 2012, 21(8): 080502.
[2] Effect of inertia mass on the stochastic resonance driven by a multiplicative dichotomous noise
Li Peng(李鹏), Nie Lin-Ru(聂林如), Huang Qi-Rui(黄奇瑞), and Sun Xing-Xiu(孙兴修) . Chin. Phys. B, 2012, 21(5): 050503.
[3] Effect of inertial mass on a linear system driven by dichotomous noise and a periodic signal
Li Peng(李鹏), Nie Lin-Ru(聂林如), Lü Xiu-Min(吕秀敏), and Zhang Qi-Bo(张启波) . Chin. Phys. B, 2011, 20(10): 100502.
[4] Stochastic resonance in a stochastic bistable system with additive noises and square-wave signal
Guo Feng(郭锋), Luo Xiang-Dong(罗向东), Li Shao-Fu(李少甫), and Zhou Yu-Rong(周玉荣). Chin. Phys. B, 2010, 19(8): 080502.
[5] Stochastic resonance in a monostable system driven by square-wave signal and dichotomous noise
Guo Feng(郭锋), Luo Xiang-Dong(罗向东), Li Shao-Fu(李少甫), and Zhou Yu-Rong(周玉荣). Chin. Phys. B, 2010, 19(8): 080504.
[6] Asymptotical p-moment stability of stochastic impulsive differential system and its application to chaos synchronization
Niu Yu-Jun(牛玉俊), Xu Wei(徐伟), and Lu Zhao-Yang(陆朝阳). Chin. Phys. B, 2010, 19(3): 030512.
[7] Experiment and application of parameter-induced stochastic resonance in an over-damped random linear system
Jiang Shi-Qi(蒋世奇), Hou Min-Jie(侯敏杰), Jia Chun-Hua(贾春华), He Ji-Rong(何吉荣), and Gu Tian-Xiang(古天祥). Chin. Phys. B, 2009, 18(7): 2667-2673.
[8] Could one single dichotomous noise cause resonant activation for exit time over potential barrier?
Li Jing-Hui(李静辉). Chin. Phys. B, 2008, 17(8): 2824-2828.
[9] Noise composed of multiplication of two dichotomous noises
Li Jing-Hui(李静辉). Chin. Phys. B, 2008, 17(6): 1990-1997.
[10] Stochastic resonance in linear system driven by multiplicative noise and additive quadratic noise
Ning Li-Juan(宁丽娟), Xu Wei(徐伟), and Yao Ming-Li(姚明礼). Chin. Phys. B, 2007, 16(9): 2595-2599.
No Suggested Reading articles found!