Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074210    DOI: 10.1088/1674-1056/19/7/074210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Einstein-Podolsky-Rosen entanglement in bad cavity case

Yuan Sui-Hong(袁绥洪) and Hu Xiang-Ming(胡响明)†ger
Department of Physics, Huazhong Normal University, Wuhan 430079, China
Abstract  This paper explores continuous variable entanglement in four-wave mixing when the atomic relaxation time is comparable to and longer than the cavity relaxation time. In this case the atomic memory is included in the field correlations and the entanglement in the output fields can be significantly enhanced. Einstein—Podolsky—Rosen (EPR) entanglement is achievable even in the bad cavity limit. This shows the EPR entanglement generation without need of good cavity.
Keywords:  atomic memory effect      EPR entanglement      four-wave mixing  
Revised:  13 January 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60778005).

Cite this article: 

Yuan Sui-Hong(袁绥洪) and Hu Xiang-Ming(胡响明) Einstein-Podolsky-Rosen entanglement in bad cavity case 2010 Chin. Phys. B 19 074210

[1] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) p248
[2] Arimondo E 1996 In: Wolf E (ed.) Progress in Optics (Amsterdam: Elsevier) 35 p257
[3] Harris S E 1997 Phys. Today 50 36
[4] Dong Y B, Zhang J X, Wang H H and Gao J R 2006 Chin. Phys. 15 1262
[5] Wang F Y, Shi B S, Lu X S and Guo G C 2008 Chin. Phys. B 17 1798
[6] Davidovich L 1996 Rev. Mod. Phys. 68 127
[7] Kolobov M I, Davidovich L, Giacobino E and Fabre C 1993 Phys. Rev. A 47 1431
[8] Carmichael H J 1986 Phys. Rev. A 33 3262
[9] Reid M D 1988 Phys. Rev. A 37 4792
[10] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[11] Slusher R E, Yurke B, Grangier P, LaPorta A, Walls D F and Reid M 1987 J. Opt. Soc. Am. B 4 1453
[12] Schumaker B L, Perlmutter S H, Shelby R M and Levenson M D 1987 Phys. Rev. Lett. 58 357
[13] McCormick C F, Boyer V, Arimondo E and Lett P D 2006 Opt. Lett. 32 178
[14] Balic V, Braje D A, Pavel K, Yin G Y and Harris S E 2005 Phys. Rev. Lett. 94 183601
[15] Kolchin P, Du S, Belthangady C, Yin G Y and Harris S E 2006 Phys. Rev. Lett. 97 113602
[16] Du S W, Wen J M, Rubin M H and Yin G Y 2007 Phys. Rev. Lett. 98 053601
[17] Du S, Kolchin P, Belthangady C, Yin G Y and Harris S E 2008 Phys. Rev. Lett. 100 183603
[18] Boyer V, Marino A M, Pooser R C and Lett P D 2008 Science 321 544
[19] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
[20] Reid M D 1989 Phys. Rev. A bf 40 913
[21] Drummond P D and Reid M D 1990 Phys. Rev. A bf 41 3930
[22] Ikram M, Li G X and Zubairy M S 2007 Phys. Rev. A 76 042317
[23] Macovei M and Li G X 2007 Phys. Rev. A 76 023818
[24] Pielawa S, Morigi G, Vitali D and Davidovich L 2007 Phys. Rev. Lett. 98 240401
[25] Cheng G L, Hu X M, Zhong W X and Li Q 2008 Phys. Rev. A 78 033811
[26] Li J Y and Hu X M 2009 J. Phys. B At. Mol. Opt. Phys. 42 055501
[27] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interactions (New York: Wiley) p460
[28] Reid M D and Walls D F 1985 Phys. Rev. A 31 1622
[29] Paul A E, Lindberg M, An S and Sargent III M 1990 Phys. Rev. A bf 42 1725
[30] Gardiner C W and Zoller P 2000 Quantum Noise 2nd ed (Berlin: Springer) p296
[31] Drummond P D and Gardiner C W 1980 J. Phys. A: Math. Gen. 13 2353
[32] Drummond P D and Walls D F 1981 Phys. Rev. A 23 2563
[33] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[34] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 endfootnotesize
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[6] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[7] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[8] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[9] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[10] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[11] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[12] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[13] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[14] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
[15] Experimental study on the Stokes effect in disordered birefringent microstructure fibers
Zhao Yuan-Yuan (赵原源), Zhou Gui-Yao (周桂耀), Li Jian-She (李建设), Zhang Zhi-Yuan (张志远), Han Ying (韩颖). Chin. Phys. B, 2014, 23(8): 084208.
No Suggested Reading articles found!