Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 066101    DOI: 10.1088/1674-1056/19/6/066101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Direct transition of potential of water droplets to electric energy using aligned single-walled carbon nanotubes

Liu Ji(刘基)a)b), Zheng Kai-Hong(郑凯泓)a), Liu Zheng(刘政)a)b), Hu Li-Jun(胡丽君)a)b), and Sun Lian-Feng(孙连峰)a)
a National Center for Nanoscience and Technology, Beijing 100190, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this paper, we report that an electromotive force (EMF) can be induced in a rope of aligned single-walled carbon nanotubes (SWNTs) when water droplets fall on this rope. The magnitude of this EMF depends sensitively on the slant angle of the SWNTs. Most interestingly, both the magnitude and the direction of the induced EFM can be modulated by applying a current to the SWNTs. The concepts of electrical slip and no-slip are proposed and can be quantitatively described by ``electrical slip resistance''. This kind of generator does not need any magnet, rotor, {etc} and shows quite a different operating mechanism and design compared with a conventional large scale hydroelectric power generator.
Keywords:  single-walled carbon nanotube      water      energy conversion  
Received:  19 October 2009      Accepted manuscript online: 
PACS:  85.35.Kt (Nanotube devices)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  84.60.-h (Direct energy conversion and storage)  
Fund: Project supported by the National Basic Research Program of China (Grant No.~2006CB932402) and the National Natural Science Foundation of China (Grant Nos.~50702015, 10574034, and 10774032).

Cite this article: 

Liu Ji(刘基), Zheng Kai-Hong(郑凯泓), Liu Zheng(刘政), Hu Li-Jun(胡丽君), and Sun Lian-Feng(孙连峰) Direct transition of potential of water droplets to electric energy using aligned single-walled carbon nanotubes 2010 Chin. Phys. B 19 066101

[1] Paradiso J A and Starner T 2005 Pervasive Comput. 4 18
[2] Yang R S, Qin Y, Dai L M and Wang Z L 2009 Nat. Nanotechnol . 4 34
[3] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Liber C M 2007 Nature 449 885
[4] Wang Z L and Song J H 2006 Science 312 242
[5] Wang X D, Song J H, Liu J and Wang Z L 2007 Science 316 102
[6] Qin Y, Wang X D and Wang Z L 2008 Nature 451 809
[7] Wang Y, Ni X G, Wang X X and Wu H A 2003 Chin. Phys. 12 1007
[8] Zhang Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[9] Ebbesen T W, Lezec H J, Hiura H, Bennet J W, Ghaemi H F and Thio T 1996 Nature 382 54
[10] Zhou X Y and Lu H J 2007 Chin. Phys. 16 335
[11] Chesnokov S A, Nalimova V A, Rinzler A G, Smally R E and Fischer J E 1999 Phys. Rev. Lett. 82 343
[12] Kral P and Shapiro M 2001 Phys. Rev. Lett. 86 131
[13] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[14] Ghosh S, Sood A K, Ramaswamy S and Kumar N 2004 Phys. Rev. B 70 205423
[15] Sood A K and Ghosh S 2004 Phys. Rev. Lett. 93 086601
[16] Liu J W and Dai L M 2007 J. Appl. Phys. 101 064312
[17] Cohen A E 2003 Science 300 1235
[18] Ghosh S, Sood A K and Kumar N 2003 Science 300 1235
[19] Persson B N J, Tartaglino U, Tosatti E and Ueba H 2004 Phys. Rev. B 69 235410
[20] Zhao Y C, Song L, Deng K, Liu Z, Zhang Z X, Yang Y L, Wang C, Yang H F, Jin A Z, Luo Q, Gu C Z, Xie S S and Sun L F 2008 Adv. Mater. 20 1772
[21] Liu G T, Zhao Y C, Deng K, Liu Z, Chu W G, Chen J R, Yang Y L, Zheng K H, Huang H B, Ma W J, Song L, Yang H F, Gu C Z, Wang C, Xie S S and Sun L F 2008 Nano Lett. 8 1071
[22] Thompson P A and Troian S M 1997 Nature 389 360
[23] Majumder M, Chopra N, Andrews R and Hinds J 2005 Nature 438 44
[24] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[25] Xu Z, Bai X D, Wang E G and Wang Z L 2005 Appl. Phys. Lett. 87 163106
[26] Collins P G, Bradley K, Ishigami M and Zettl A 2000 Science 287 1801
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[4] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[5] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[6] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[7] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[8] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[9] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[10] Impact of microsecond-pulsed plasma-activated water on papaya seed germination and seedling growth
Deng-Ke Xi(席登科), Xian-Hui Zhang(张先徽), Si-Ze Yang(杨思泽), Seong Shan Yap(叶尚姗), Kenji Ishikawa(石川健治), Masura Hori (堀勝), and Seong Ling Yap(叶尚凌). Chin. Phys. B, 2022, 31(12): 128201.
[11] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[12] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[13] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[14] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[15] Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence
Hao Wang(王昊), Fu-Zeng Kang(康福增), Xuan Wang(王瑄), Wei Zhao(赵卫), and Shu-Wei Sun(孙枢为). Chin. Phys. B, 2021, 30(6): 064207.
No Suggested Reading articles found!