Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057304    DOI: 10.1088/1674-1056/19/5/057304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of interface roughness on the carrier transport in germanium MOSFETs investigated by Monte Carlo method

Du Gang(杜刚), Liu Xiao-Yan(刘晓彦), Xia Zhi-Liang(夏志良), Yang Jing-Feng(杨竞峰), and Han Ru-Qi(韩汝琦)
Institute of Microelectronics, Peking University, Beijing 100871, China
Abstract  Interface roughness strongly influences the performance of germanium metal--organic--semiconductor field effect transistors (MOSFETs). In this paper, a 2D full-band Monte Carlo simulator is used to study the impact of interface roughness scattering on electron and hole transport properties in long- and short- channel Ge MOSFETs inversion layers. The carrier effective mobility in the channel of Ge MOSFETs and the in non-equilibrium transport properties are investigated. Results show that both electron and hole mobility are strongly influenced by interface roughness scattering. The output curves for 50~nm channel-length double gate n and p Ge MOSFET show that the drive currents of n- and p-Ge MOSFETs have significant improvement compared with that of Si n- and p-MOSFETs with smooth interface between channel and gate dielectric. The $82\%$ and $96\%$ drive current enhancement are obtained for the n- and p-MOSFETs with the completely smooth interface. However, the enhancement decreases sharply with the increase of interface roughness. With the very rough interface, the drive currents of Ge MOSFETs are even less than that of Si MOSFETs. Moreover, the significant velocity overshoot also has been found in Ge MOSFETs.
Keywords:  carrier transport      interface scattering      germanium MOSFETs      Monte Carlo  
Received:  15 April 2009      Revised:  18 November 2009      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  68.35.Ct (Interface structure and roughness)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60606013), and the National Basic Research Program of China (Grant No.~2006CB302705).

Cite this article: 

Du Gang(杜刚), Liu Xiao-Yan(刘晓彦), Xia Zhi-Liang(夏志良), Yang Jing-Feng(杨竞峰), and Han Ru-Qi(韩汝琦) Effect of interface roughness on the carrier transport in germanium MOSFETs investigated by Monte Carlo method 2010 Chin. Phys. B 19 057304

[1] Lundstrom M and Ren Z B 2002 IEEE Trans. Electron Device 49 133
[2] Shang H L, Okorn-Schmidt H, Chan K K, Copel M, Ott J A, Kozlowski P M, Steen S E, Cordes S A, Wong H S P, Jones E C and Haensch W E 2002 IEDM Tech. Dig. San Francisco, CA, USA 8--11 Dec. 2002 p441
[3] Chui C O, Kim H, Chi D, Triplett B B, Mcintyre P C and Saraswat K C 2002 IEDM Tech. Dig. San Francisco, CA, USA 8--11 Dec. 2002 p437
[4] Whang S J, Lee S J, Gao F, Wu N, Zhu C X, Pan J S, Tang L J and Kwong D L 2004 IEDM Tech. Dig. San Francisco, CA, USA 13--15 Dec. 2004 p307
[5] Suzanne C Martin, Lorin M Hitt and James J Rosenberg 1989 IEEE Electron Device Lett. 10 325
[6] Wu N, Zhang Q, Balasubramanian N, Chan D S H and Zhu C 2007 IEEE Trans. Electron Devices 54 733
[7] Zhang Q, Huang J, Wu N, Chen G, Hong M, Bera L K and Zhu C 2006 IEEE Electron Device Lett. 27 728
[8] Yu H Y, Ishibashi M, Park J H, Kobayashi M and Saraswat K C 2009 IEEE Electron Device Lett. 30 675
[9] Romanjek K, Hutin L, Royer C L, Pouydebasque A, Jaud M A, Tabone C, Augendre E, Sanchez L, Hartmann J M, Grampeix H, Mazzocchi V, Soliveres S, Truche R, Clavelier L, Scheiblin P, Garros X, Reimbold G, Vinet M, Boulanger F and Deleonibus S 2009 Solid-State Electronics 53 723
[10] Kuzum D, Pethe A J, Krishnamohan T and Saraswat K C 2009 IEEE Trans. Electron Devices 56 648
[11] Cheng C C, Chien C H, Luo G L, Lin C L, Chen H S, Liu J C, Kei C C, Hsiao C N and Chang C Y 2009 IEEE Trans. Electron Devices 56 1681
[12] Toriumi A, Tabata T, Lee C H, Nishimura T, Kita K and Nagashio K 2009 Microelectronic Engineering 86 1571
[13] Low T, Hou Y T, Li M F, Zhu C, Chin A, Samudra G, Chan L and Kwong D L 2003 IEDM Tech. Dig. Washington DC, USA 8--10 Dec. 2003 p691
[14] Rahman A, Ghosh A and Lundstrom M Washington DC, USA 8--10 Dec. 2003 IEDM Tech Dig. 2003 p471
[15] Laux S E 2004 IEDM Tech Dig. San Francisco, CA, USA 13--15 Dec. 2004 p135
[16] Ghosh B, Wang X, Fan X F, Register L F and Banerjee S K 2005 IEEE Trans. Electron Devices 52 547
[17] Du G, Liu X Y, Xia Z L, Kang J F, Wang Y, Han R Q, Yu H Y and Kwong D L 2005 IEEE Trans. Electron Devices 52 2258
[18] Du G, Liu X Y, L. Sun and Han R Q 2006 Chin. Phys. 15 177
[19] Chelikowsky J R and Cohen M L 1976 Phys. Rev. B 14 556
[20] Kunikiyo T, Takenaka M, Kamakura Y, Yamaji M, Morifuji M, Taniguchi K and Hamaguchi C 1994 J. Appl. Phys. 75 297
[21] Thoma R, Peifer H J, Engl W L, Quade W, Brunetti R and Jacoboni C 1991 J. Appl. Phys. 69 2300
[22] Jacoboni C and Reggiani L 1983 Rev. Mod. Phys 55 645
[23] Sze S M 1981 Physics of Semiconductor Devices (2nd ed) (New York: Wiley) p46
[24] Grgee D, Jungemann C, Nguyen C D, Neinhus B and Meinerzhagen B 2004 7th Int. Conf. on Solid-State and Integrated Circuits Technology Proceedings B eijing, October 18--21, 2004 p991
[25] Takagi S, Toriumi A, Iwase M and Tango H 1994 IEEE Trans. Electron Devices 41 2357
[26] Gamiz F, Lopez-Villanueva J A, Banqueri J, Carceller J E and Cartujo P 1995 IEEE Trans. Electron Devices 42 258
[27] Gamiz F, Lopez-Villanueva J A, Roldan J B, Carceller J E and Cartujo P 1998 IEEE Trans. Electron Devices 45 1122
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[4] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[5] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[6] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[7] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[8] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[9] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[10] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[11] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[12] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[13] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[14] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[15] GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor
Bin Zhang(张彬), Tian-Ci Xie(谢天赐), Zhuang Qin(秦壮), Hao-Peng Li(李昊鹏), Song Li(李松), Wen-Hui Zhao(赵文辉), Zi-Yin Chen(陈子印), Jun Xu(徐军), Elfed Lewis, and Wei-Min Sun(孙伟民). Chin. Phys. B, 2021, 30(4): 048701.
No Suggested Reading articles found!