CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonadiabatic spin-torque and damping effects on vortex core switching triggered by a single current pulse |
Jin Wei(金伟)a)b) and Liu Yao-Wen(刘要稳)a)† |
a Department of Physics and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, China; b College of Physics and Communication Electronics, Anhui Normal University, Wuhu 241000, China |
|
|
Abstract Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simulations are employed to study the vortex core switching behaviour excited by a short in-plane Gaussian current pulse. We find that both the switching mechanism and the switching time are not sensitive to changes in the phenomenological parameters of spin-torque nonadiabaticity and Gilbert damping. The switching time, however, strongly depends on the current strength. In addition, we have theoretically predicted the parameter range of current pulses to achieve a single switching event.
|
Received: 20 August 2009
Revised: 11 September 2009
Accepted manuscript online:
|
PACS:
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
75.75.+a
|
|
|
75.50.Bb
|
(Fe and its alloys)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos.~50871075 and
10974142) and the Natural Science Foundation of Shanghai, China
(Grant No.~08ZR1420500). |
Cite this article:
Jin Wei(金伟) and Liu Yao-Wen(刘要稳) Nonadiabatic spin-torque and damping effects on vortex core switching triggered by a single current pulse 2010 Chin. Phys. B 19 037001
|
[1] |
Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E and Tricker DM 1999 Phys. Rev. Lett. 83 1042
|
[2] |
Shinjo T, Okuno T, Shinjo R T, Okuno T, Hassdorf R, Shigeto K andOno T 2000 Science 289 930
|
[3] |
Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M andWiesendanger R 2002 Science 298 577
|
[4] |
Yang X H 2008 Acta Phys. Sin. 57 7279 (in Chinese)
|
[5] |
Cowburn R P 2007 Nature Materials 6 255
|
[6] |
Wei H X, Zhu F Q Han X F, Wen Z C and Chien C L 2008 Phys.Rev. B 77 224432
|
[7] |
Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y andFukamichi K 2001 J. Appl. Phys. 90 6548
|
[8] |
van Waeyenberge B, Puzic A, Stoll H., Chou K W, Tyliszczak T, HertelR, F?hnle M, Brückl H, Rott K, Reiss G, Neudecker I, WeissD, Back C H and Schütz G 2006 Nature (London)444 461
|
[9] |
Hertel R, Gliga S, F?hnle M and Schneider C M 2007 Phys.Rev. Lett. 98 117201
|
[10] |
Xiao Q F, Rudge J, Choi B C, Hong Y K and Donohoe G 2006 Appl. Phys. Lett. 89 262507
|
[11] |
Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H,Tyliszczak T, Woltersdorf G, Back C H, Schutz G and van WaeyenbergeB 2009 Nature Phys. 5 332
|
[12] |
Kravchuk V P, Sheka D D, Gaididei Y and Mertens F G 2007 J. Appl. Phys. 102 043908
|
[13] |
Lee K S, Kim S K, Yu Y S, Choi Y S, Guslienko K, Jung Y H andFischer P 2008 Phys. Rev. Lett. 101 267206
|
|
[Guslienko K Y, Lee K S and Choi S K 2008 Phys. Rev. Lett. 100 027203
|
[14] |
Weigand M, Waeyenberge V, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G,Back C H and Schuetz G 2009 Phys. Rev. Lett. 102 077201
|
[15] |
Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A andOno T 2007 Nature Mater. 6 269
|
[16] |
Kim S K, Choi Y S, Lee K S, Guslienko K Y and Jeong D E 2007 Appl. Phys. Lett. 91 082506
|
[17] |
Liu Y W, Gliga S, Hertel R and Schneider C M 2007 Appl.Phys. Lett. 91 112501
|
[18] |
Yamada K, Kasai S, Nakatani Y, Kobayashi K and Ono T 2008 Appl. Phys. Lett. 93 152502
|
[19] |
Kim S K, Choi K S, Yu Y S and Choi Y S 2008 Appl. Phys.Lett. 92 022509
|
[20] |
Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
|
[21] |
Thiaville A, Nakatani Y, Miltat J and Suauki Y 2005 Europhys. Lett. 69 990
|
[22] |
Du G X, Han X F, Peng Z L, Wei H X, Zhan W S and Zhao S F 2006 Acta Phys. Sin.55 860 (in Chinese)
|
[23] |
Jin W and Liu Y W 2007 Chin. Phys. 16 1731
|
[24] |
Curcic M, van Waeyenberge B, Vansteenkiste A, Weigand M,Sackmann V, Stoll H, Fahnle M, Tyliszczak T, Woltersdorf G, Back C Hand Schutz G 2008 Phys. Rev. Lett. 101 197204
|
[25] |
Caputo J G, Gaididei Y, Mertens F G and Sheka D D 2007 Phys.Rev. Lett. 98 056604
|
[26] |
Liu Y W, He H and Zhang Z 2007 Appl. Phys. Lett 91 242501
|
[26a] |
Jin W, He H and Liu Y W 2009 J. Appl. Phys. 105 013906
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|