Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037001    DOI: 10.1088/1674-1056/19/3/037001
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonadiabatic spin-torque and damping effects on vortex core switching triggered by a single current pulse

Jin Wei(金伟)a)b) and Liu Yao-Wen(刘要稳)a)†
a Department of Physics and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, China; b College of Physics and Communication Electronics, Anhui Normal University, Wuhu 241000, China
Abstract  Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simulations are employed to study the vortex core switching behaviour excited by a short in-plane Gaussian current pulse. We find that both the switching mechanism and the switching time are not sensitive to changes in the phenomenological parameters of spin-torque nonadiabaticity and Gilbert damping. The switching time, however, strongly depends on the current strength. In addition, we have theoretically predicted the parameter range of current pulses to achieve a single switching event.
Keywords:  magnetic vortex      spin torque      micromagnetic simulation  
Received:  20 August 2009      Revised:  11 September 2009      Accepted manuscript online: 
PACS:  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.75.+a  
  75.50.Bb (Fe and its alloys)  
  75.10.-b (General theory and models of magnetic ordering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~50871075 and 10974142) and the Natural Science Foundation of Shanghai, China (Grant No.~08ZR1420500).

Cite this article: 

Jin Wei(金伟) and Liu Yao-Wen(刘要稳) Nonadiabatic spin-torque and damping effects on vortex core switching triggered by a single current pulse 2010 Chin. Phys. B 19 037001

[1] Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E and Tricker DM 1999 Phys. Rev. Lett. 83 1042
[2] Shinjo T, Okuno T, Shinjo R T, Okuno T, Hassdorf R, Shigeto K andOno T 2000 Science 289 930
[3] Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M andWiesendanger R 2002 Science 298 577
[4] Yang X H 2008 Acta Phys. Sin. 57 7279 (in Chinese)
[5] Cowburn R P 2007 Nature Materials 6 255
[6] Wei H X, Zhu F Q Han X F, Wen Z C and Chien C L 2008 Phys.Rev. B 77 224432
[7] Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y andFukamichi K 2001 J. Appl. Phys. 90 6548
[8] van Waeyenberge B, Puzic A, Stoll H., Chou K W, Tyliszczak T, HertelR, F?hnle M, Brückl H, Rott K, Reiss G, Neudecker I, WeissD, Back C H and Schütz G 2006 Nature (London)444 461
[9] Hertel R, Gliga S, F?hnle M and Schneider C M 2007 Phys.Rev. Lett. 98 117201
[10] Xiao Q F, Rudge J, Choi B C, Hong Y K and Donohoe G 2006 Appl. Phys. Lett. 89 262507
[11] Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H,Tyliszczak T, Woltersdorf G, Back C H, Schutz G and van WaeyenbergeB 2009 Nature Phys. 5 332
[12] Kravchuk V P, Sheka D D, Gaididei Y and Mertens F G 2007 J. Appl. Phys. 102 043908
[13] Lee K S, Kim S K, Yu Y S, Choi Y S, Guslienko K, Jung Y H andFischer P 2008 Phys. Rev. Lett. 101 267206
[Guslienko K Y, Lee K S and Choi S K 2008 Phys. Rev. Lett. 100 027203
[14] Weigand M, Waeyenberge V, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G,Back C H and Schuetz G 2009 Phys. Rev. Lett. 102 077201
[15] Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A andOno T 2007 Nature Mater. 6 269
[16] Kim S K, Choi Y S, Lee K S, Guslienko K Y and Jeong D E 2007 Appl. Phys. Lett. 91 082506
[17] Liu Y W, Gliga S, Hertel R and Schneider C M 2007 Appl.Phys. Lett. 91 112501
[18] Yamada K, Kasai S, Nakatani Y, Kobayashi K and Ono T 2008 Appl. Phys. Lett. 93 152502
[19] Kim S K, Choi K S, Yu Y S and Choi Y S 2008 Appl. Phys.Lett. 92 022509
[20] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
[21] Thiaville A, Nakatani Y, Miltat J and Suauki Y 2005 Europhys. Lett. 69 990
[22] Du G X, Han X F, Peng Z L, Wei H X, Zhan W S and Zhao S F 2006 Acta Phys. Sin.55 860 (in Chinese)
[23] Jin W and Liu Y W 2007 Chin. Phys. 16 1731
[24] Curcic M, van Waeyenberge B, Vansteenkiste A, Weigand M,Sackmann V, Stoll H, Fahnle M, Tyliszczak T, Woltersdorf G, Back C Hand Schutz G 2008 Phys. Rev. Lett. 101 197204
[25] Caputo J G, Gaididei Y, Mertens F G and Sheka D D 2007 Phys.Rev. Lett. 98 056604
[26] Liu Y W, He H and Zhang Z 2007 Appl. Phys. Lett 91 242501
[26a] Jin W, He H and Liu Y W 2009 J. Appl. Phys. 105 013906
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[3] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[4] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[5] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[6] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[7] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[8] Spin torque nano-oscillators with a perpendicular spin polarizer
Cuixiu Zheng(郑翠秀), Hao-Hsau Chen(陈浩轩), Xiangli Zhang(张祥丽), Zongzhi Zhang(张宗芝), Yaowen Liu(刘要稳). Chin. Phys. B, 2019, 28(3): 037503.
[9] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[10] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[11] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[12] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[13] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[14] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[15] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
No Suggested Reading articles found!