Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 032901    DOI: 10.1088/1674-1056/19/3/032901
NUCLEAR PHYSICS Prev   Next  

Numerical simulation for space charge dominated beam transport

Lü Jian-Qin(吕建钦)
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
Abstract  To simulate the intense bunched beam transport, a computer program LEADS-3D has been developed. The particle trajectories are analysed with the Lie algebraic method. The third order approximation of the trajectory solutions is made with space charge forces off, and the second order approximation is made with space charge forces on. The particle distribution in the 3D ellipsoid is uniform or Gaussian. Most of the conventional beam optical elements are incorporated in the code. The optimization procedures are provided to fit the beam lines to satisfy the given optical conditions.
Keywords:  computer code      beam dynamics      intense bunched beam      nonlinear  
Received:  26 November 2008      Revised:  06 January 2009      Accepted manuscript online: 
PACS:  29.27.Eg (Beam handling; beam transport)  
  29.20.-c (Accelerators)  
  41.85.Lc (Particle beam focusing and bending magnets, wiggler magnets, and quadrupoles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10975011), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20070001001).

Cite this article: 

Lü Jian-Qin(吕建钦) Numerical simulation for space charge dominated beam transport 2010 Chin. Phys. B 19 032901

[1] 1 Lü J Q 1995 Nucl. Instru. & Methods A 355 253
[2] Lü J Q and Quan S W 1994 Nucl. Instru. & Methods A 346 31
[3] Dragt A J 1982 AIP Conf. Proc. 87 147
[4] Lü J Q and Li L H 2004 Chin. Phys. 13 1665
[5] Lü J Q, Li J H and Li C L 2004 Chin. Phys. 13 657
[6] Lü J Q and Zhang Z 2007 Chin. Phys. 16 1280
[7] Goldstein H 2002 Classical Mechanics 3rd Ed (California: Addison-Wesley)
[8] Dragt A J and Finn J 1976 J. Math. Phys. 17 2215
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[6] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[9] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[10] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[11] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[12] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
No Suggested Reading articles found!