|
|
Time-and-space resolved measurements of the emission uniformity of carbon fibre cathode in high-current pulsed discharge |
Liu Lie(刘列)†, Li Li-Min(李立民), Xu Qi-Fu(徐启福), Cheng Guo-Xin(程国新), and Chang Lei(苌磊) |
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract The remaining challenges, confronting high-power microwave (HPM) sources and pulsed power generators, stimulate the developments of robust relativistic electron beam sources. This paper presents a carbon fibre cathode which is tested in a single pulsed power generator. The distribution and the development of cathode plasma are observed by time-and-space resolved diagnostics, and the uniformity of electron beam density is checked by taking x-ray images. A quasistationary behaviour of cathode plasma expansion is observed. It is found that the uniformity of the extracted electron beam is satisfactory in spite of individual plasma jets on the cathode surface. These results show that carbon fibre cathodes can provide a positive prospect for developing a high-quality electron beam.
|
Received: 09 February 2009
Revised: 05 August 2009
Accepted manuscript online:
|
PACS:
|
52.80.-s
|
(Electric discharges)
|
|
52.50.Dg
|
(Plasma sources)
|
|
41.75.Ht
|
(Relativistic electron and positron beams)
|
|
52.70.Kz
|
(Optical (ultraviolet, visible, infrared) measurements)
|
|
29.25.Bx
|
(Electron sources)
|
|
Fund: Project supported by the National
High Technology Research and Development Program of China. |
Cite this article:
Liu Lie(刘列), Li Li-Min(李立民), Xu Qi-Fu(徐启福), Cheng Guo-Xin(程国新), and Chang Lei(苌磊) Time-and-space resolved measurements of the emission uniformity of carbon fibre cathode in high-current pulsed discharge 2010 Chin. Phys. B 19 032902
|
[1] |
Friedman M, Myers M C, Chan Y and Sethian J D 2008 Appl.Phys. Lett. 92 141501
|
[2] |
Vekselman V, Gleizer J, Yarmolich D, Felsteiner J, Krasik Y, Liu Land Bernshtam V 2008 Appl. Phys. Lett. 93 081503
|
[3] |
Liu L, Li L, Zhang J, Zhang X, Wen J and Liu Y 2008 Rev.Sci. Instrum. 79 064701
|
[4] |
Liu L, Li L, Zhang X, Wen J, Wan H and Zhong H 2007 Appl. Phys. Lett. 91 161504
|
[5] |
Li L, Liu L, Xu Q, Wen J and Liu Y 2008 Rev. Sci. Instrum. 79 094701
|
[6] |
Saveliev Y M, Spark S N, Kerr B A, Harbour M I, Douglas S C andSibbett W 2000 IEEE Trans. Plasma Sci. 28 478
|
[7] |
Ozur G E, Proskurovsky D I, Rotshtein V P and Markov A B 2003 Laser Part. Beams 21 157
|
[8] |
Li L, Liu L, Chang L, Wan H, Wen J and Liu Y 2009 Appl.Surf. Sci. 255 4563
|
[9] |
Xia L S, Wang M, Huang Z P, Zhang K Z, Shi J S, Zhang L W and Deng JJ 2004 Acta Phys. Sin. 53 3435 (in Chinese)
|
|
[0 Shiffler D, Heggemeier J, LaCour M, Golby K and Ruebush M 2004 Phys. Plasmas 11 1680
|
[11] |
Meunier J L, Coulombe S and Kandah M 2007 Plasma SourcesSci. Technol. 16 33
|
[12] |
Chen Y, Mankowski J, Walter J, Kristiansen M and Gale R 2007 IEEE Trans. Dielectr. Electr. Insul. 14 1037
|
[13] |
Agee F J 1998 IEEE Trans. Plasma Sci. 26 235
|
[14] |
Blaugrund A E 2003 Appl. Phys. Lett. 83 1264
|
[15] |
Krasik Y E, Dunaevsky A and Felsteiner J 2001 Eur. Phys. J. D 15 345
|
[16] |
Miller R B 1998 J. Appl. Phys. 84 3880
|
[17] |
Krasik Y E, Dunaevsky A and Felsteiner J 2001 Phys. Plasmas 8 2466
|
[18] |
Shiffler D, Haworth M, Cartwright K, Umstattd R, Ruebush M, HeidgerS, LaCour M, Golby K, Sullivan D, Duselis P and Luginsland J 2008 IEEE Trans. Plasma Sci. 36 718
|
[19] |
Li L, Liu L, Wan H, Zhang J, Wen J, Liu Y 2009 PlasmaSources Sci. Technol . 18 015011
|
[20] |
Li L, Liu L, Wen J, Men T and Liu Y 2008 J. Phys. D: Appl. Phys. 41 125201
|
[21] |
Shiffler D, Ruebush M, Haworth M, Umstattd R, LaCour M, Golby K,Zagar D and Knowles T 2002 Rev. Sci. Instrum. 73 4358
|
[22] |
Li L, Liu L, Wen J and Liu Y 2009 IEEE Trans. Plasma Sci. 37 15
|
[23] |
Krasik Y E, Dunaevsky A, Krokhmal A, Felsteiner J, Gunin A V, PegelI V and Korovin S D 2001 J. Appl. Phys. 89 2379
|
[24] |
Huang Y, Duan X, Lan X, Tan Z, Wang N, Tang X and He Y 2008 Laser Part. Beams 26 671
|
[25] |
Turchi P J and Peterkin R E 1998 IEEE Trans. Plasma Sci. 26 1485
|
[26] |
Burdovitsin V A and Oks E M 2008 Laser Part. Beams 26 619
|
[27] |
Shiffler DA, Luginsland J, Ruebush M, LaCour M, Golby K, CartwrightK, Haworth M and Spencer T 2004 IEEE Trans. Plasma Sci. 32 1262
|
[28] |
Shiffler D, Ruebush M, LaCour M, Golby K, Umstattd R, Clark M C,Luginsland J, Zagar D and Sena M 2001 Appl. Phys. Lett.79 2871
|
[29] |
Shiffler D, Ruebush M, Zagar D, LaCour M, Sena M, Golby K, Haworth Mand Umstattd R 2002 J. Appl. Phys. 91 5599
|
[30] |
Shiffler D, LaCour M, Golby K, Sena M, Mitchell M, Haworth M,Hendricks K and Spencer T 2001 IEEE Trans. Plasma Sci. 29 445
|
[31] |
Litvinov E A 1985 IEEE Trans. Electr. Insul. EI-20 683
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|