CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Synthesis of high-TC ferromagnetic Mn-doped ZnO nanorods by thermal evaporation |
Zheng Kai-Hong(郑凯泓)a)b), Liu Zheng(刘政)a)b), Liu Ji(刘基)a)b), Hu Li-Jun (胡丽君) a)b),Wang Dong-Wei(王东伟)a), Chen Chun-Ying(陈春英)a), and Sun Lian-Feng(孙连峰)a)† |
a National Center for Nanoscience and Technology, Beijing 100190, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract This paper reports that a large amount of Mn-doped ZnO nanorods have been synthesized through thermal evaporation. The morphologies and properties are studied with x-ray diffraction, a scanning electron microscope, transmission electron microscope and Raman spectroscope. The results indicate that the manganese atoms occupy the zinc vacancies in the wurtzite lattice of ZnO without forming secondary phases. The exact manganese content has been studied by the x-ray fluorescence spectrum. Meanwhile, the magnetic moment versus temperature result proves that the as-prepared Mn-doped ZnO nanorods show ferromagnetic properties at temperatures as high as 400~K. These studies provide a good understanding of the origin of magnetic properties in diluted magnetic semiconductors.
|
Received: 23 April 2009
Revised: 02 June 2009
Accepted manuscript online:
|
PACS:
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.75.+a
|
|
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
68.37.Hk
|
(Scanning electron microscopy (SEM) (including EBIC))
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by ``973''
Program of Ministry of Science and Technology of China (Grant No.
2006CB932402) and National Natural Science Foundation of China
(Grant Nos. 50702015, 10574034 and 10774032). |
Cite this article:
Zheng Kai-Hong(郑凯泓), Liu Zheng(刘政), Liu Ji(刘基), Hu Li-Jun (胡丽君),Wang Dong-Wei(王东伟), Chen Chun-Ying(陈春英), and Sun Lian-Feng(孙连峰) Synthesis of high-TC ferromagnetic Mn-doped ZnO nanorods by thermal evaporation 2010 Chin. Phys. B 19 026101
|
[1] |
Furdyna J K 1988 J. Appl. Phys. 64 R29
|
[2] |
He X B, Yang T Z, Cai J M, Zhang C D, Guo H M, Shi D X, Shen CD and Gao H J 2008 Chin. Phys. B 17 3444
|
[3] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von MolnárS, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[4] |
Nakayama Y, Pauzauskie P J, Radenovic A, Onorato R M, Saykally R J, Liphardt J and Yang P D 2007 Nature (London) { 447 1098
|
[5] |
Wang Z L 2007 Mater. Today 10 20
|
[6] |
Dietl T, Ohno H, Matsujura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[7] |
Deka S and Joy PA 2007 Solid State Commun. 142 190
|
[8] |
Jung S W, An S J, Yi G, Jung C U, Lee S and Cho S 2002 Appl. Phys.Lett. 80 4561
|
[9] |
Sharma P, Gupta A, Rao K V, Owen F J, Sharma R, Ahuja R, Guillen J MO, Johansson B and Gehring G A 2003 Nature Mater. 2 673
|
[10] |
Baik J M and Lee J L 2005 Adv. Mater. 17 2745
|
[11] |
Liu X C, Zhang H W, Zhang T, Chen B Y, Chen Z Z, Song L X and ShiE W 2008 Chin. Phys. B 17 1371
|
[12] |
Baik J M, Jang H W, Kim J K and Lee J L 2003 Appl. Phys. Lett. 82 583
|
[13] |
Wang Y S, Thomas P J and Brien P O 2006 J. Phys. Chem. B 110 21412
|
[14] |
Kulkarni J S, Kazakova O and Holmes J D 2006 Appl. Phys. A 85 277
|
[15] |
Chang Y Q, Wang D B, Luo X H, Xu X Y, Chen X H, Li L, Chen C P, Wang R M, Xu J and Yu D P 2003 Appl. Phys. Lett. 8 3 4020
|
[16] |
Zheng K H, Zhao Y C, Deng K, Liu Z, Sun L F, Zhang Z X, Song L,Yang H F, Gu C Z and Xie S S 2008 Appl. Phys. Lett. 92213116
|
[17] |
Liu G T, Zhao Y C, Zheng K H, Liu Z, Ma W J, Ren Y, Xie SS and Sun L F 2009 Nano Lett. 9 239
|
[18] |
Zhang X M, Zhang Y, Wang Z L, Mai W J, Gu Y D, Chu W S and Wu Z Y 2008 Appl. Phys. Lett. 92 162102
|
[19] |
Samanta K, Dussan S, Katiyara R S and Bhattacharya P 2007 Appl.Phys. Lett. 90 261903
|
[20] |
Wang J B, Huang G J, Zhong X L, Sun L Z, Zhou Y C and Liu E H 2006 Appl. Phys. Lett. 88 252502
|
[21] |
Yang L W, Wu X L, Huang G S, Qiu T and Yang Y M 2005 J. Appl.Phys. 97 014308
|
[22] |
Kundaliya D C, Ogale S B, Lofland S E, Dhar S, Metting C J, Shinde SR, Ma Z, Varughese B, Ramanujachary K V, Salamanca R L andVenkatesan T 2004 Nature Mater. 3 709
|
[23] |
Behan A J, Mokhtari A, Blythe H J, Score D, Xu X H, Neal J R, Fox AM and Gehring G A 2008 Phys. Rev. Lett. 100 047206
|
[24] |
Liu X X, Lin F T, Sun L L, Cheng W J, Ma X M and Shi W Z 2006 Appl. Phys. Lett. 88 062508
|
[25] |
Park J H, Kim M G, Jang H M and Ryu S 2004 Appl. Phys. Lett. 84 1338
|
[26] |
Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nature Mater}.{4 173
|
[27] |
Fukumura T, Jin Z W, Kawasaki M, Shono T, Hasegawa T, KoshiharaS and Koinuma H 2001 Appl. Phys. Lett. 78 985
|
[28] |
Judith L, MacManus D, Neeraj K, Liu Y L and Mary E V 2006 Adv.Mater. 19 2925
|
[29] |
Xu Q Y, Schmidt H, Hartmann L, Hochmuth H, Lorenz M, SetzerA, Esquinazi P, Meinecke C and Grundmann M 2007 Appl. Phys.Lett. 91 092503
|
[30] |
Yan W S, Sun Z H, Liu Q H, Li Z G, Pan Z Y, Wang J, Wei S Q, WangD, Zhou Y X and Zhang X Y 2007 Appl. Phys. Lett. 91062113
|
[31] |
Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, RoutC and Waghmare U V 2005 Phys. Rev. Lett. 94 187204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|