Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 024209    DOI: 10.1088/1674-1056/19/2/024209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Effect of mode-mode competition on atom-atom entanglement

Wu Qin(吴琴)a)†, Fang Mao-Fa(方卯发)b), and Cai Jian-Wu(蔡建武)c)
a School of Basic Medical Science, Guangdong Medical College, Zhanjiang 524023, China; b College of Physics and Information Science, Hunan Normal University, Changsha 410081, China; c Department of Physics, Hunan Industrial University, Zhuzhou 412007, China
Abstract  A system consisting of two atoms interacting with a two-mode vacuum is considered, where each atom is resonant with the two cavity modes through two different competing transitions. The effect of mode--mode competition on the atom--atom entanglement is investigated. We find that the entanglement between the two atoms can be induced by the mode--mode competition. For the initial atomic state $|\varPsi(0)\rangle$, whether the atoms are initially separated or entangled, a large or even maximal entanglement between them can be obtained periodically by introducing the mode--mode competition. For the initial atomic state $|\varPhi(0)\rangle$, the strong mode--mode competition can prevent the two atoms entangled initially from suffering entanglement sudden death; besides, it makes them in a more stable and longer-lived entanglement than in the non-competition case.
Keywords:  mode--mode competition      concurrence      entanglement sudden death  
Received:  16 April 2009      Revised:  05 June 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10374025), the Foundation of Education Bureau of Hunan Province, China (Grant Nos.~06A038 and 06C080) and the Zhanjiang Projects for Development of Science and Technology, China (Grant No.~2008C10019).

Cite this article: 

Wu Qin(吴琴), Fang Mao-Fa(方卯发), and Cai Jian-Wu(蔡建武) Effect of mode-mode competition on atom-atom entanglement 2010 Chin. Phys. B 19 024209

[1] Nilesen M A and Chuang I L 2000 Quantum Computation and Quantum Information} (Cambridge: Cambridge University Press)
[2] Barenco A 1996 Contemp. Phys. 37 375
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[5] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[6] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[7] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[8] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[9] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Y?nac M, Yu T and Eberly J H 2006 J. Phys. B 39 S621
[11] Y?nac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
[12] Santos M F, Milman P, Davidovicn L and Zagury N 2006 Phys. Rev. A 7 3 040305
[13] Yu T and Eberly J H 2004 Phys. Rev. Lett. 9 3 140404
[14] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[15] Yu T and Eberly J H 2006 Opt. Commum. 2 64 393
[16] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
[17] Eberly J H and Yu T 2007 Science 316 555
[18] Ficek Z and Tana?R 2006 Phys. Rev. A 74 024304
[19] Cui H T, Li K and Yi X X 2007 Phys. Lett. A 365 44
[20] Sainz I and Bj?rk G 2007 Phys. Rev. A 76 042313
[21] Cao X and Zheng H 2008 Phys. Rev. A 77 022320
[22] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
[23] Hu Y H, Fang M F, Cai J W and Jiang C L 2008 Int. J. Theor. Phys. 47 2554
[24] Zhang G F 2007 Chin. Phys. 16 1855
[25] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
[26] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 888
[27] Almeida M P, Melo de, Hor-Meyll M, Salles A, Walborn S P, Souto R P H and Dacidocich L 2007 Science 316 579
[28] Salles A, Melo F, Almeida M P, Hor-Meyll M, WalbornS P, Souto R P H and Davidovich L 2008 Phys. Rev. A 78 022322
[29] Agarwal G S and Nayak N 1986 Phys. Rev. A 3 3 391
[30] Zhu Y 1990 Phys. Rev. A 41 6574
[31] Agarwal G S and Nayak N 1982 Phys. Rev. A 25 2056
[32] Bloembergen N 1965 Nonliear Optics(New York: Benjamin)
[33] Jyotsna I V and Agarwal G S 1994 Phys. Rev. A 50 1770
[34] Wu Q and Fang M F 2004 Chin. Phys. 1 3 1432
[35] Wu Q and Fang M F 2005 Commun. Theor. Phys. 4 3 515
[36] Wu Q and Fang M F 2006 Acta Quantum Opt. 12 8 (in Chinese)
[37] Wu Q and Fang M F 2006 Journal of Natural Science of Hunan Normal University 29 49 (in Chinese)
[38] Wu Q, Fang M F and Hu Y H 2007 Chin. Phys. 16 1971
[39] Wu Q, Fang M F, Feng Y Z and Hu Y H 2008 Chin. Phys. B 17 2963
[40] Wu Q, Fang M F, Li S X, Li Y and Hu Y H 2008 Commun. Theor. Phys. 50 1411
[41] Wootters K 1998 Phys. Rev. Lett. 80 2248
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[5] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[6] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[7] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[8] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[9] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[10] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[11] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[12] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[13] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[14] Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium
Wu Qin (吴琴), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(3): 034203.
[15] Controllable preparation of two-mode entangled coherent states in circuit QED
Ji Ying-Hua (嵇英华), Liu Yong-Mei (刘咏梅). Chin. Phys. B, 2014, 23(11): 110303.
No Suggested Reading articles found!